1. Oxidation and etching reaction 1970 Kern Puotinen RCA . RCA SC-1(Standard Clean-1, APM) 1:1:5 , 75~90 10~20 cleaning H₂O₂가 H₂O+O₂ . , H_2O_2 NH₄OH Au, Ag, Cu, Ni, Cd, Zn, Co, Cr SC - 1 . 1 H_2O_2 NH₄OH . etching SC - 1 Si .

.

(

.

)

 $H_2O_2 = H O_2^- + H^+ \quad (1) \text{ dissociation of peroxide}$ $Si + 2H O_2^- = 2OH^- + SiO_2 \quad (2) \text{ oxidation reaction of Si by HO_2}^ SiO_2 + OH^- = HSi O_3^- \quad (3) \text{ etching of SiO_2 by OH}^ Si + 6OH^- = Si O_3^{2+} + 3H_2O + 3e^- \quad (4) \text{ etching of Si by OH}^-$

가

.

OH⁻ slightly etching electrical repulsion

Fig. 1. Particles and organic contaminants removal mechanism in SC1 solution

Fig. 2. Oxidation and etching of silicon surface during SC1 solution

()

2. Particle adhesion and removal

Stern layerDiffused layerdouble layer.3negative chargeelectrical double layer.3Stern layerDiffused layer

,

charged

Fig. 3. Electrical double layer model for charging particle

(

)

Fig. 4. Zeta potential pH

()

Substrate (SiO₂)

EDR(Electrostatic Double Layer Repulsion) No EDR

Fig. 5.