```
1. .
                 ?:
                                                                                    (1
                                          3
                                                 (unique tertiary structure)
                                        3
     (specificity)
                               3
                                                           (energy)
                                     가
    . (Packing
                                                                                )
2.
(1)
(2)
    )cystic fibrosis , \alpha v \iota \sigma \pi \psi \rho \tau \iota \tau v \alpha - 1
                                                                  , familial hypercholesterolemia,
                    CJD: Creutzfeldt-Jacob disease
          (
                                                                 )
                   amyloid
(3)
                                                                                     (aggregation)
                               (inclusion body)
                                                            refolding
                           in vivo
denaturation
                      refolding
                                                                                     protein
                 refolding yield
                                                                             destabilize
                                    'pump-out'
                                                           equilibrium shift
    (
                       product
refolding
              protein
```

off-pathway

(4)

Protein folding steps are explored for the execution of functions. membrane fusion protein plasma serpins , Native form metastable trapped folding intermediate 7

?

□ 가 가?

native interaction 가?

on non-native interaction 가?

native interaction

■ 2 가?

□ 2 가 2 가?

■ rate-limiting step (transition state) 7\?

■ 가?

3.

Thermodynamic model (random search)
 multiple pathway or no pathway

2. Kinetic model

discrete pathway

What is Levinthal paradox?

If 100 residues, 3 conformers per residue, 10⁻¹³ sec/ transition,

Total search time: 1.6 x 10²⁷ years!

So, FOLDING CANNOT be a RANDOM SEARCH!

1. Framework model

secondary structure formation precedes collapse

folding by heirarchy
folding is driven by local interactions
2. Collapse model
Hydrophobic collapse (nonlocal interactions)
drives secondary structure formation
가 .
(Q) (intermediate) ?
; energy level , native interactions .
Hydrophobic collapse (submilisecond event)
αξ((((((((((((2 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
(non-native state)
2. 2 (coalesce)
3. 'Molten globule'
(Native secondary structures w/o tertiary interactions)
2 , 3
compact

4. Side-chain packing (stability maximization)

intermediate	: concept 3				
'nati	ve interaction' . , folding intermediate				
'native interaction'					
Protein dissection	가				
native	: Oas & Kim (1988) Nature 336, 42-48				
What is New View?					
- Classic vs. New View of	Protein Folding				
pathway vs. landscape					
state vs. ensemble					
- Resolution to Levinthal	paradox:				
Collapse to compact state	narrowed the search space				
As internal free energy ,					
conformational freedom (e	ntropy) .				
So, there hasn't been any 'paradox.'					
Resulted from misconception of framing the folding as playing golf					
- Transition state:					
Not a single structural state	e but an ensemble of various conformations.				

4.				
(1)				
● Protein folding of small proteins is reversible, highly cooperative. ◆ two-state model				
● Stabilization free energy (G): 5-15 kcal/mol				
Proteins are marginally stable				
because flexibility is essential for protein folding, function, and removal.				
Measuring the conformational stability of a protein:				
Protein structure: a practical approach. chapter 13 (Pace et al.)				
Urea-melt, Guanidine-melt, Temperature-melt				
Fitting				
Test for a two-state				
a) single probe : biphasic -)νιαμοδ(ραλυδομ γνιδλοφ				
b) two probes : non-coinsident - κροωεμαρφ λεδομ				
■ Eq'm study				
a) l 가 two-state				
I too low to detect – quantitative limit				
I 가 N U - sensitive method				
CD spectroscopy population				
averaged no information				
• atom probe 가 .				

New view: folding is parallel multi-pathway diffusion-like proces

b) eq'm intermedia)		
(2)			
Eq'm data 가 two	state model	kinetic analysis	I 가
(monophasic vs. n	nultiphasic) → ψδυτσ χιτε	ενικ folding mechanis	sm 가
sensitive			
Kinetic Folding	Intermediate		
a) I: Intrisic instabi	ility, short-lived 🔸 h	ave to be trapped, fast	method
How to trap I			
* low tempera	ture		
* disulfide inte	ermediate		
* amide hydro	gen exchange & pulse-I	abeling	
Fast r	method: stop-flow, temp	erature jump	
b) kinetic data	mechanism – e	extremely difficult	
c) is	omeric species 가		
proline isomerizati	on $U_f \& U_s$.	isomeric I	structural kinetic
	dina : cinalo evacació		
	ding : single exponential		
Kinetics of fol	ding : mutiple phases du	le to heterogeneity of ur	itolded species

(Q) equilibrium intermediate kinetic intermediate /f?
:
native amide proton exchange .
Bai et al. (1995) Science 269, 192-197
(Q) What is the folding intermediate like?
:molten-globule: native secondary structure but without fixed tertiary interactions
(3) Detection and Characterization of Intermediates
: chemical heterogeneity (aggregates, incomplete unfolding, domain folding etc.)
(a) Spectroscopy (CD, fluorescence, UV difference, Raman)
(b) NMR (chmical shift of His, amide proton exchange)
(c) Trapping I by blocking -SH group
(d) Differential labeling (extrinsic probes)
: labeling folding process .
◆ Folding labeling rapid .
◆ probes (spectroscopic, paramagnetic)
(potential many controls . modification
(e) Limited proteolysis : unfolding

(f) Enzyme activity, ligand binding, antigenicity (mAb: most sensitive)

eq'm stu	udy, kinetics	가				
For rapid inter	conversion: sing	le sharp zor	ne			
Long	er interconversi	on: broade	eded ban	ıd		
Slowe	er interconversi	on: only th	ne origina	l form		
Kinetics: 2 °C	() 30		electroph	oresis	
trapping I	by blocking –SI	d group				
: S-S bor	nd			cysteine	가	. S-S
bond	folding drive	:				
Unfolding	refolding	1	trap	,	species	S-S bond
Trap: by idoacetic acid, idoacetamide (Creighton), by acid (Kim)						
Separation: HPLC (cf. chromatography, paper electrophoresis)						
Identification: free-SH blocked by IAA $ ightarrow$ S-S reduced to –SH $ ightarrow$ $\epsilon\varpi\iota\tau\alpha\varpi\iota\rho\epsilon\delta$ AAI						
τνεχσερουλφ / ω δελεβαλ $ ightarrow$)γνιδλοφνυ ετελπμοχ(σισψλομρεητ $ ightarrow$ ΧΛΠΗ						
amide prof	ton	(pulse-la	beling)			
*			amide		(proton)	
(D ₂ C))		,		
				(solven	t exclusion)	

: Transverse Urea Gradient Gel Electrophoresis

(g)

```
(i)
                                   denaturant
         amide
                                                           (
(ii) denaturant
                                                                            H2O
      рΗ
   ),
(iii)
                                                                     < 10 msec)
              ( msec
                            msec)
      рΗ
(iv) pH
2-D NMR
                                                           protection rate
                     가
            가
                                                  가
      amide
                   (
                         )
                                рΗ
                                                  가
                  (Empirical Method & Homology Scanning)
5.
SWISS-PROT web site (http://expasy.hcuge.ch/sprot/sprot-top.html)
                       proteomics tools
http://kr.expasy.org/
1) Residue propensity
```

Dalal et al., 1997. Nature Struct B	iol 4, 548-5	52			
50%가			(four-helix	bundle β	
sheet) ,					
가		,	Homology-based		
3) Simulation					
6.					
C.					
Protein disulfide isomerase, Peptidy	√l prolyl isome	erase : slo	ow step		
Chaperones : molecular chaperone	unfolded				
aggregate(off-pathway)		, hsp60	hap70	heat shock	
protein					
7. ()				
`	,				
				motif	
		가			

'de novo design' .

2) Homology-based

motif

가 가

.

가

•