# Moving Bed Concept



1

## True Moving Bed



Real counter current between liquid and solid stream

# Moving Bed Concept



The solid flow is simulated by a continous displacement of inlets / outlets

# Simulated Moving Bed



The solid flow is simulated by a discrete displacement of inlets / outlets

Inlet and outlet flow positions after  $\Delta T$ Simulation of the solid phase movement

# Chromatographic process modelling

- Fast way to design processes
  - Rapid calculations
  - Numerical optimizations
  - Only small amounts of products required
- Parametric study
  - Estimation of robustness
  - Determination of critical factors

## **Process simulation**





# Required data for modeling



Flow rates and  $\Delta t$  function of

- Adsorption isotherms (retention, selectivity, capacity)  $C_A^{sol}=f_A(C_A^{liq},C_b^{liq})$   $C_B^{sol}=f_B(C_A^{liq},C_B^{liq})$
- Column efficiency
   Van Deemter H
   H=A+Bu+C/u

Pressure drop Kozeny Karman equation

 $\frac{\Delta P}{L} = k \cdot u$ 



# Column efficiency: plate model



Column efficiency (N) depends on:

- Liquid velocity (u)
- Column length (L)

Van Deemter model:

$$\frac{L}{N} = A + Bu$$

# Pressure drop

The pressure drop ( $\Delta P$ ) over a column filled by monodispersed stationary phase is proportionnal to:

- Column length (L)
- Speed velocity (u)
- 1/(particle diameter)<sup>2</sup>
- Solvent viscosity

For a fixed eluent and stationary phase:

$$\frac{\Delta P}{L} = k \cdot u$$

# Required experiments for modelling

#### Column efficiency

• 2 Analytical injections at different flowrates



• 1 Pressure drop measurement



Some overloaded injections



 $L_{M} = A + Bu$ 

 $\rightarrow \frac{\Delta P}{I} = k \cdot u$ 







## TMB flowrates – non linear isotherm Zone I and IV

Zone I :

 $q_I \ge \overline{K}_2$ 

#### **Zone IV :**

$$q_{IV} \leq \frac{1}{2} \begin{cases} \overline{N}\widetilde{K}_{1} + q_{III} - \lambda + \widetilde{K}_{1}C_{A}^{F}(q_{III} - q_{II}) \\ -\sqrt{\left[\overline{N}\widetilde{K}_{1} + q_{III} - \lambda + \widetilde{K}_{1}C_{1}^{F}(q_{III} - q_{II})\right]^{2} - 4\overline{N}\widetilde{K}_{1}(q_{III} - \lambda)} \end{cases} + \lambda$$

## TMB flowrates – non linear isotherm Zone II and III



# TMB – SMB two equivalent processes

| TMB                                                                                                         | SMB                                                                                                                  |
|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| Steady state                                                                                                | Periodic steady state                                                                                                |
| Solid flow-rate $\overline{M}$                                                                              | Periodic shift of the<br>injection/collection lines<br>$\Delta T = \frac{(1-\varepsilon)V_{col}}{\overline{M}}$      |
| Internal flow-rates                                                                                         | Internal flow-rates                                                                                                  |
| $Q_k^{TMB} = q_k . \overline{M}$ $k=I, II, III \text{ or } IV$                                              | $Q_{k}^{SMB} = Q_{k}^{TMB} + \frac{\varepsilon}{1 - \varepsilon} \overline{M}_{k=I, II, III \text{ or } IV}$         |
| Eluent, extract, feed, raffinate<br>flow-rates<br>$Q_{El}^{TMB}, Q_{Ext}^{TMB}, Q_{F}^{TMB}, Q_{Raf}^{TMB}$ | Eluent, extract, feed, raffinate<br>flow-rates<br>$Q_{El}^{SMB}$ , $Q_{Ext}^{SMB}$ , $Q_{F}^{SMB}$ , $Q_{Raf}^{SMB}$ |

# Agreement between calculations and experiments

### It works !



### If the input data:

- adsorption
- kinetics
- hydrodynamics

are reliable.

# Accuracy of modelling tools

SMB : experimental and simulated internal concentration profiles



# Choosing the best conditions



2 effects are taken into account by optimization

Limitation by Col. efficiency Limitation by Pressure drop Optimal bed length Unsecure : bad estimation of column efficiency can involve an important loss of productivity

### Secured bed length

Safer : using higher bed length implies a slightly lower but safer productivity