# DME(10 TPD) Process Simulation Using Aspen Plus Release 12.1

Dr. Jungho Cho, Professor Department of Chemical Engineering Dong Yang University



#### **Overall Flowsheet for DME Production Unit**





#### **DME Production Unit Simulation Using A+**





# **Flowsheet for Toluene Recovery Process**

| Unit   | Description                                               |
|--------|-----------------------------------------------------------|
| DA-103 | DME Absorber                                              |
| DA-104 | CO2 Stripper                                              |
| DA-105 | DME Column                                                |
| DA-106 | MEOH Recovery Column                                      |
| Stream | Description                                               |
| 17     | DME Synthesis Reactor Outlet to DME Absorber Feed Stream  |
| 18     | DME Absorber OVHD Gas Stream to Flare                     |
| 19     | DME Absorber BTMS Stream                                  |
| 21     | CO2 Stripper OVHD Gas Stream                              |
| 23     | CO2 Stripper BTMS Stream                                  |
| 26     | DME Column OVHD Stream                                    |
| 28     | DME Column BTMS Stream                                    |
| 31     | MEOH Recovery Column OVHD Stream Recycled to DME Absorber |
| 33     | MEOH Recovery Column BTMS Stream                          |



#### **Overall Material Balance**

|                       | 17       | 18       | 19       | 21       | 23       | 26       | 28       | 31       | 33      |
|-----------------------|----------|----------|----------|----------|----------|----------|----------|----------|---------|
| Phase                 | Mixed    | Vapor    | Liquid   | Vapor    | Liquid   | Liquid   | Liquid   | Liquid   | Liquid  |
| Molar Percent         |          |          |          |          |          |          |          |          |         |
| H2                    | 49.2044  | 63.3394  | 0.5511   | 9.7249   | 7.32E-14 | 4.52E-13 | 0.0000   | 0.0000   | 0.0000  |
| СО                    | 5.7191   | 7.2161   | 0.1919   | 3.3869   | 8.19E-14 | 5.06E-13 | 0.0000   | 0.0000   | 0.0000  |
| CO2                   | 19.2281  | 20.2310  | 4.1787   | 73.7331  | 2.75E-04 | 1.70E-03 | 6.77E-12 | 7.27E-12 | 0.0000  |
| CH4                   | 0.4620   | 0.5795   | 0.0185   | 0.3270   | 4.34E-14 | 2.68E-13 | 0.0000   | 0.0000   | 0.0000  |
| N2                    | 0.0584   | 0.0748   | 9.63E-04 | 0.0170   | 2.26E-15 | 1.40E-14 | 0.0000   | 0.0000   | 0.0000  |
| H2O                   | 3.4594   | 0.0148   | 5.7143   | 3.236E-5 | 6.0576   | 5.61E-03 | 7.2264   | 2.4255   | 73.1028 |
| DME                   | 19.4806  | 7.0841   | 17.0556  | 12.8111  | 17.1306  | 99.9927  | 1.3430   | 1.4409   | 0.0000  |
| MEA                   | 2.3854   | 1.4602   | 72.2858  | 3.084E-6 | 76.6284  | 2.92E-06 | 91.4268  | 96.1336  | 26.8411 |
| MEOH                  | 2.64E-03 | 2.37E-20 | 3.009E-3 | 0.0000   | 3.19E-03 | 0.0000   | 3.81E-03 | 2.64E-16 | 0.0560  |
| MW (Kg/Kmol)          | 21.5106  | 16.0500  | 33.9587  | 39.5540  | 33.6216  | 46.0684  | 31.2179  | 31.9039  | 21.8041 |
| Flow rate (K-mole/hr) | 67.6140  | 52.0089  | 59.3237  | 3.3619   | 55.9618  | 9.0580   | 46.9038  | 43.7177  | 3.1860  |
| Flow rate (Ton/day)   | 34.896   | 20.040   | 48.336   | 3.192    | 45.168   | 10.000   | 35.136   | 33.480   | 1.668   |
| Temperature (°C)      | 45.0000  | 57.8774  | 63.7119  | 14.0000  | 110.2622 | 46.0000  | 125.8043 | 42.0432  | 89.7695 |



#### 1<sup>st</sup> Column: DA-103 (DME Absorber)





#### **DME Absorber Simulation (DA-103)**

Primary objective of the absorber is to recovery DME as an absorber bottom product by using methanol as a solvent.



#### **DME Absorber Simulation** Continued

- Consider the following absorber distillation to produce a purified toluene using sulfolane as a solvent.
  - Feed1: Crude Feed (Refer to feedstock characterization)
  - Feed2: Methanol Solvent
    - 1) Solvent Feed Temperature: 45°C
    - 2) Flowrate: 67.614 K-mole/hr
  - DME Absorber Column
    - 1) Number of Theoretical Stages: 7
    - 3) Overall Tray Efficiencies:
    - 4) Feed Tray Location: 7
    - 6) Solvent Feed Tray Location: 1



#### **DME Absorber Simulation** Continued

- Selection of appropriate thermodynamic model for the simulation of DME absorber using methanol as a solvent is very important.
  - NRTL (Non Random Two Liquid) activity coefficient model was chosen to explain non-ideal phase behavior of liquid mixture between H2O, DME, methanol and MEA.
  - Henry's law option was also selected for the calculation of non-condensible supercritical gases like H2, CO, CO2, CH4 and N2 in a liquid mixture.



#### **Material Balance Around DA-103**

|                                | 17       | 31       | 18       | 19       |
|--------------------------------|----------|----------|----------|----------|
| Phase                          | Mixed    | Liquid   | Vapor    | Liquid   |
| Molar Percent                  |          |          |          |          |
| H2                             | 49.2044  | 0.0000   | 63.3394  | 0.5511   |
| СО                             | 5.7191   | 0.0000   | 7.2161   | 0.1919   |
| CO2                            | 19.2281  | 7.27E-12 | 20.2310  | 4.1787   |
| CH4                            | 0.4620   | 0.0000   | 0.5795   | 0.0185   |
| N2                             | 0.0584   | 0.0000   | 0.0748   | 9.63E-04 |
| H2O                            | 3.4594   | 2.4255   | 0.0148   | 5.7143   |
| DME                            | 19.4806  | 1.4409   | 7.0841   | 17.0556  |
| MEA                            | 2.3854   | 96.1336  | 1.4602   | 72.2858  |
| MEOH                           | 2.64E-03 | 2.64E-16 | 2.37E-20 | 3.009E-3 |
| MW (Kg/Kmole)                  | 21.5106  | 31.9039  | 16.0500  | 33.9587  |
| Flow rate (K-mole/hr)          | 67.6140  | 43.7177  | 52.0089  | 59.3237  |
| Flow rate (Ton/day)            | 34.896   | 33.480   | 20.040   | 48.336   |
| Temperature (°C)               | 45.0000  | 42.0432  | 57.8774  | 63.7119  |
| Pressure (Kg/cm <sup>2</sup> ) | 52.0330  | 1.333    | 48.0330  | 48.0330  |



# 2<sup>nd</sup> Column: DA-104 (CO2 Stripper)





# **CO2 Stripper Simulation**

Primary objective of the CO2 Stripper is to strip CO2 dissolved in the liquid feed stream at column top product.



# **CO2 Stripper Simulation** Continued

- Selection of appropriate thermodynamic model for the simulation of DME absorber using methanol as a solvent is very important.
  - NRTL (Non Random Two Liquid) activity coefficient model was chosen to explain non-ideal phase behavior of liquid mixture between H2O, DME, methanol and MEA.
  - Henry's law option was also selected for the calculation of non-condensible supercritical gases like H2, CO, CO2, CH4 and N2 in a liquid mixture.



## Material Balance Around CO2 Stripper

|                                | 19       | 21       | 23       |
|--------------------------------|----------|----------|----------|
| Phase                          | Liquid   | Vapor    | Liquid   |
| Molar Percent                  |          |          |          |
| H2                             | 0.5511   | 9.7249   | 7.32E-14 |
| СО                             | 0.1919   | 3.3869   | 8.19E-14 |
| CO2                            | 4.1787   | 73.7331  | 2.75E-04 |
| CH4                            | 0.0185   | 0.3270   | 4.34E-14 |
| N2                             | 9.63E-04 | 0.0170   | 2.26E-15 |
| H2O                            | 5.7143   | 3.236E-5 | 6.0576   |
| DME                            | 17.0556  | 12.8111  | 17.1306  |
| MEA                            | 72.2858  | 3.084E-6 | 76.6284  |
| MEOH                           | 3.009E-3 | 0.0000   | 3.19E-03 |
| MW (Kg/Kmole)                  | 33.9587  | 39.5540  | 33.6216  |
| Flow rate (K-mole/hr)          | 59.3237  | 3.3619   | 55.9618  |
| Flow rate (Ton/day)            | 48.336   | 3.192    | 45.168   |
| Temperature (°C)               | 63.7119  | 14.0000  | 110.2622 |
| Pressure (Kg/cm <sup>2</sup> ) | 48.0330  | 22.0330  | 22.6330  |



## 3<sup>rd</sup> Column: DA-105 (DME Column)





# **DME Column Simulation**

Primary objective of the DME column is to recovery DME as a top product.



# **DME Column Simulation** Continued

- Consider the following DME column to obtain a purified DME as a top product.
  - <u>Feed: CO2 Stripper Bottom Stream (Refer to feedstock characterization)</u>

1) DME Product Purity = 99.9 by mole %

- DME Column
  - 1) Number of Theoretical Stages: 20
  - 3) Overall Tray Efficiencies: Can by estimated by correlation
  - 4) Feed Tray Location: 11



# **DME Column Simulation** Continued

- Selection of appropriate thermodynamic model for the simulation of DME Column is very important.
  - NRTL (Non Random Two Liquid) activity coefficient model was chosen to explain non-ideal phase behavior of liquid mixture between H2O, DME, methanol and MEA.
  - Henry's law option was also selected for the calculation of non-condensible supercritical gases like H2, CO, CO2, CH4 and N2 in a liquid mixture.



#### **Material Balance Around DA-105**

|                                | 23       | 26       | 28       |
|--------------------------------|----------|----------|----------|
| Phase                          | Liquid   | Liquid   | Liquid   |
| Molar Percent                  |          |          |          |
| H2                             | 7.32E-14 | 4.52E-13 | 0.0000   |
| СО                             | 8.19E-14 | 5.06E-13 | 0.0000   |
| CO2                            | 2.75E-04 | 1.70E-03 | 6.77E-12 |
| CH4                            | 4.34E-14 | 2.68E-13 | 0.0000   |
| N2                             | 2.26E-15 | 1.40E-14 | 0.0000   |
| H2O                            | 6.0576   | 5.61E-03 | 7.2264   |
| DME                            | 17.1306  | 99.9927  | 1.3430   |
| MEA                            | 76.6284  | 2.92E-06 | 91.4268  |
| MEOH                           | 3.19E-03 | 0.0000   | 3.81E-03 |
| MW (Kg/Kmole)                  | 33.6216  | 46.0684  | 31.2179  |
| Flow rate (K-mole/hr)          | 55.9618  | 9.0580   | 46.9038  |
| Flow rate (Ton/day)            | 45.168   | 10.000   | 35.136   |
| Temperature (°C)               | 110.2622 | 46.0000  | 125.8043 |
| Pressure (Kg/cm <sup>2</sup> ) | 22.6330  | 10.8330  | 11.0330  |



# 4<sup>th</sup> Column: DA-106 (MEOH Recovery Column)





Slide 20

# **MEOH Recovery Column Simulation**

Primary objective of the MEOH Recovery Column is to recovery MEOH as a top product.



### **MEOH Recovery Column Simulation** Continued

- Consider the following MEOH Recovery Column to recover methanol stream as a top product.
  - Feed: DME Column BTMS Stream (Refer to feedstock characterization)

1) Methanol Purity at Column Top: > 94 mole%

- MEOH Column
  - 1) Number of Theoretical Stages: 20
  - 3) Overall Tray Efficiencies: Can be Estimated by Correlation
  - 4) Feed Tray Location: 11



## **MEOH Recovery Column Simulation** Continued

- Selection of appropriate thermodynamic model for the simulation of MEOH Recovery Column is very important.
  - NRTL (Non Random Two Liquid) activity coefficient model was chosen to explain non-ideal phase behavior of liquid mixture between H2O, DME, methanol and MEA.
  - Henry's law option was also used for the calculation of noncondensible supercritical gases in a mixed solvent.



#### **Material Balance Around DA-106**

|                                | 28       | 31       | 33      |
|--------------------------------|----------|----------|---------|
| Phase                          | Liquid   | Liquid   | Liquid  |
| Molar Percent                  |          |          |         |
| H2                             | 0.0000   | 0.0000   | 0.0000  |
| СО                             | 0.0000   | 0.0000   | 0.0000  |
| CO2                            | 6.77E-12 | 7.27E-12 | 0.0000  |
| CH4                            | 0.0000   | 0.0000   | 0.0000  |
| N2                             | 0.0000   | 0.0000   | 0.0000  |
| H2O                            | 7.2264   | 2.4255   | 73.1028 |
| DME                            | 1.3430   | 1.4409   | 0.0000  |
| MEA                            | 91.4268  | 96.1336  | 26.8411 |
| MEOH                           | 3.81E-03 | 2.64E-16 | 0.0560  |
| MW (Kg/Kmole)                  | 31.2179  | 31.9039  | 21.8041 |
| Flow rate (K-mole/hr)          | 46.9038  | 43.7177  | 3.1860  |
| Flow rate (Ton/day)            | 35.136   | 33.480   | 1.668   |
| Temperature (°C)               | 125.8043 | 42.0432  | 89.7695 |
| Pressure (Kg/cm <sup>2</sup> ) | 11.0330  |          | 1.5330  |



# The End...



Slide 25