LNG 생산기지 실제 조업 데이터 분석을 통한 생산성 향상 및 에너지 절감 연구

2005년 12월 16일(금) 동양대학교 생명화학공학과 조 정 호

대학협력과제 연구협약 사항

협약 과제 명	LNG 생산기지 실제 조업데이터 분석을 통한
	생산성 향상 및 에너지 절감 연구
협약 기간	2005년 7월 ~ 2006년 6월 (12개월)
협약 금액	30,000천원
협약 당사자	협약자: 한국가스공사 연구개발원장
	협약 대상자: 동양대학교 산학협력단장
	연구 책임자: 동양대학교 생명화학공학과 조정호

연구개발 추진체계: 1차년도 (2005년 7월 ~ 12월)

연구개발 추진체계: 2차년도 (2006년 1월~6월)

LNG Composition: Mole%

	Case 1	Case 2	Case 3	Case 4
	Lean	Rich	Max N ₂	Typical
Nitrogen	0.00	0.00	1.00	0.04
Methane	96.74	85.12	94.33	89.26
Ethane	1.89	8.63	1.97	8.64
Propane	0.68	4.14	2.50	1.44
i-Butane	0.34	1.10	0.10	0.27
N-Butane	0.34	0.90	0.10	0.35
i-Pentane	0.01	0.10	0.00	0.00
N-Pentane	0.00	0.01	0.00	0.00
MW	16.791	19.320	17.189	17.924
GHV	9,882	11,163	9,975	10,450
Sp. Gr.	0.434	0.478	0.448	0.455

Binary Interaction Parameters: Aspen Plus

	1)	2)	3)	4)	5)	6)	7)	8)
1) Nitrogen		0	0	0	0	0	0	0
2) Methane			0	0	0	0	0	0
3) Ethane				0	0	0	0	0
4) Propane					0	0	0	0
5) i-Butane						0	X	Х
6) N-Butane							0	0
7) i-Pentane								0
8) N-Pentane								

$$BIP's = \frac{8 \times 7}{2!} = 28$$

26 pairs of BIP's are available in Aspen Plus database.

Binary Interaction Parameters: Aspen Plus

Component i	NITROGEN	NITROGEN	NITROGEN	NITROGEN	NITROGEN	NITROGEN	NITROGEN	METHANE
Component j	METHANE	ETHANE	PROPANE	I-BUTANE	N-BUTANE	I-PENTAN	N-PENTAN	ETHANE
Temperature units	С	С	С	С	С	С	С	С
Source	EOS-LIT	EOS-LIT	EOS-LIT	EOS-LIT	EOS-LIT	EOS-LIT	EOS-LIT	EOS-LIT
kaij	0.0278	0.0407	0.0763	0.0944	0.07	0.0867	0.0878	-7.80E-03
Tlower	-273.15	-273.15	-273.15	-273.15	-273.15	-273.15	-273.15	-273.15
Tuppper	726.85	726.85	726.85	726.85	726.85	726.85	726.85	726.85
Component i	METHANE	METHANE	METHANE	METHANE	METHANE	ETHANE	ETHANE	ETHANE
Component j	PROPANE	I-BUTANE	N-BUTANE	I-PENTAN	N-PENTAN	PROPANE	I-BUTANE	N-BUTANE
Temperature units	С	С	С	С	С	С	С	С
Source	EOS-LIT	EOS-LIT	EOS-LIT	EOS-LIT	EOS-LIT	EOS-LIT	EOS-LIT	EOS-LIT
kaij	9.00E-03	0.0241	5.60E-03	-7.80E-03	0.019	-2.20E-03	-0.01	6.70E-03
Tlower	-273.15	-273.15	-273.15	-273.15	-273.15	-273.15	-273.15	-273.15
Tlower Tuppper	<u>-273.15</u> 726.85	<u>-273.15</u> 726.85	<u>-273.15</u> 726.85	<u>-273.15</u> 726.85	-273.15 726.85	-273.15 726.85	<u>-273.15</u> 726.85	<u>-273.15</u> 726.85
Tlower Tuppper	-273.15 726.85	-273.15 726.85	-273.15 726.85	-273.15 726.85	-273.15 726.85	-273.15 726.85	-273.15 726.85	-273.15 726.85
Tlower Tuppper Component i	-273.15 726.85 ETHANE	-273.15 726.85 PROPANE	-273.15 726.85 PROPANE	-273.15 726.85 PROPANE	-273.15 726.85 PROPANE	-273.15 726.85 I-BUTANE	-273.15 726.85 N-BUTANE	-273.15 726.85
Tlower Tuppper Component i Component j	-273.15 726.85 ETHANE N-PENTAN	-273.15 726.85 PROPANE I-BUTANE	-273.15 726.85 PROPANE N-BUTANE	-273.15 726.85 PROPANE I-PENTAN	-273.15 726.85 PROPANE N-PENTAN	-273.15 726.85 I-BUTANE N-BUTANE	-273.15 726.85 N-BUTANE N-PENTAN	-273.15 726.85 I-PENTAN N-PENTAN
Tlower Tuppper Component i Component j Temperature units	-273.15 726.85 ETHANE N-PENTAN C	-273.15 726.85 PROPANE I-BUTANE C	-273.15 726.85 PROPANE N-BUTANE C	-273.15 726.85 PROPANE I-PENTAN C	-273.15 726.85 PROPANE N-PENTAN C	-273.15 726.85 I-BUTANE N-BUTANE C	-273.15 726.85 N-BUTANE N-PENTAN C	-273.15 726.85 I-PENTAN N-PENTAN C
Tlower Tuppper Component i Component j Temperature units Source	-273.15 726.85 ETHANE N-PENTAN C EOS-LIT	-273.15 726.85 PROPANE I-BUTANE C EOS-LIT	-273.15 726.85 PROPANE N-BUTANE C EOS-LIT	-273.15 726.85 PROPANE I-PENTAN C EOS-LIT	-273.15 726.85 PROPANE N-PENTAN C EOS-LIT	-273.15 726.85 I-BUTANE N-BUTANE C EOS-LIT	-273.15 726.85 N-BUTANE N-PENTAN C EOS-LIT	-273.15 726.85 I-PENTAN N-PENTAN C EOS-LIT
Tlower Tuppper Component i Component j Temperature units Source kaij	-273.15 726.85 ETHANE N-PENTAN C EOS-LIT 5.60E-03	-273.15 726.85 PROPANE I-BUTANE C EOS-LIT -0.01	-273.15 726.85 PROPANE N-BUTANE C EOS-LIT 0	-273.15 726.85 PROPANE I-PENTAN C EOS-LIT 7.80E-03	-273.15 726.85 PROPANE N-PENTAN C EOS-LIT 0.02 <u>33</u>	-273.15 726.85 I-BUTANE N-BUTANE C EOS-LIT 1.10E- <u>03</u>	-273.15 726.85 N-BUTANE N-PENTAN C EOS-LIT 0.0204	-273.15 726.85 I-PENTAN N-PENTAN C EOS-LIT 0

726.85

Tuppper

726.85

726.85

726.85

726.85

726.85

726.85

726.85

Soave-Redlich-Kwong Equation of State

□ Functional Form:

$$P = \frac{RT}{V-b} - \frac{a\,\alpha}{V\left(V+b\right)}$$

Energy and Size Parameters:

$$a = \sum_{i} \sum_{j} x_{i} x_{j} a_{ij} \qquad b = \sum_{i} x_{i} b_{i}$$

□ Mixing Rule:

$$a_{ij} = \sqrt{a_i a_j} \left(1 - k_{ij} \right)$$

Binary Interaction Parameters: PRO/II

	1)	2)	3)	4)	5)	6)	7)	8)
1) Nitrogen		0	0	0	0	0	0	0
2) Methane			0	0	0	0	0	0
3) Ethane				0	0	0	Х	0
4) Propane					0	Х	0	0
5) i-Butane						0	Х	Х
6) N-Butane							Х	0
7) i-Pentane								Х
8) N-Pentane								

$$BIP's = \frac{8 \times 7}{2!} = 28$$

22 pairs of BIP's are available in PRO/II database.

Binary Interaction Parameters: PRO/II

SRK INTERACTION PARAMETERS

KIJ = A(I,J) + B(I,J)/T + C(I,J)/T*2

I	J	KA(I,J)	KB(I,J)	KC(I,J)	UNITS	FROM
1	2	0.0300	0.00	0.00	DEG K	SIMSCI BANK
1	3	0.0600	0.00	0.00	DEG K	SIMSCI BANK
1	4	0.0900	0.00	0.00	DEG K	SIMSCI BANK
1	5	0.1130	0.00	0.00	DEG K	SIMSCI BANK
1	б	0.1130	0.00	0.00	DEG K	SIMSCI BANK
1	7	0.1400	0.00	0.00	DEG K	SIMSCI BANK
1	8	0.1400	0.00	0.00	DEG K	SIMSCI BANK
2	3	-7.800E-03	0.00	0.00	DEG K	SIMSCI BANK
2	4	9.000E-03	0.00	0.00	DEG K	SIMSCI BANK
2	5	0.0241	0.00	0.00	DEG K	SIMSCI BANK
2	б	5.600E-03	0.00	0.00	DEG K	SIMSCI BANK
2	7	-7.800E-03	0.00	0.00	DEG K	SIMSCI BANK
2	8	0.0190	0.00	0.00	DEG K	SIMSCI BANK
3	4	-2.200E-03	0.00	0.00	DEG K	SIMSCI BANK
3	5	-1.000E-02	0.00	0.00	DEG K	SIMSCI BANK
3	6	6.700E-03	0.00	0.00	DEG K	SIMSCI BANK
3	8	5.600E-03	0.00	0.00	DEG K	SIMSCI BANK
4	5	-1.000E-02	0.00	0.00	DEG K	SIMSCI BANK
4	7	7.800E-03	0.00	0.00	DEG K	SIMSCI BANK
4	8	0.0233	0.00	0.00	DEG K	SIMSCI BANK
5	6	1.100E-03	0.00	0.00	DEG K	SIMSCI BANK
б	8	0.0204	0.00	0.00	DEG K	SIMSCI BANK

Slide 10

Key Binary 1: P – X - Y Data: Methane + Ethane at -99.8°F

Key Binary 2: P – X - Y Data: Methane + Propane at -75.0°F

Key Binary 3: P – X - Y Data: Ethane + Propane at 195K

LNG Composition: Mole%

	Case 1	Case 2	Case 3	Case 4
	Lean	Rich	Max N ₂	Typical
MW	16.791	19.320	17.189	17.924
	(16.791)	(19.318)	(17.225)	(17.925)
GHV	9,882	11,163	9,975	10,450
(Kcal/Nm ³)	(9,875)	(11,154)	(9,940)	(10,446)
Sp. Gr.	0.434	0.478	0.448	0.455
	(0.439)	(0.485)	(0.454)	(0.461)

Typical LNG Properties

Typical				
Nitrogen	0.04			
Methane	89.26			
Ethane	8	.64		
Propane	1.	.44		
i-Butane	0.	.27		
N-Butane	0.35			
i-Pentane	0.00			
N-Pentane	0.	.00		
MW	17.924	(17.925)		
GHV	10,450	(10,446)		
Density (Kg/m ³)	455	(461)		
BP at 1.13Kg/cm ²	1.13Kg/cm ² -158.53 (-158			
Viscosity at -160°C (cP)	0.142	(0.15076)		
Cp (Kcal/kg°C)	0.8	(0.789)		

LNG Vapor Properties

	By KOGAS	Simulation
Components	Mole%	Mole %
Nitrogen	0.34	1.2071
Methane	99.64	98.7783
Ethane	0.02	0.0146
Total	100.00	100.00
MW	16.090	(16.4783)
Density (Kg/m ³) *	1.525	(1.564)
Viscosity at -160°C (cP) *	0.0057	(0.00560)
Cp (Kcal/kg°C) *	0.50	(0.488)

The '*' means that physical properties were measured at -130°C, 1.13 Kg/cm² abs.

Phase Envelop for Typical LNG Stream

Slide 17

LNG, BOG 물성추산을 위한 열역학 모델 개발 (I): 순수성분의 액체의 밀도를 정확하게 추산하기 위한 상태방정식의 Functional form과 Correlation equation의 적용성의 검토를 중심으로....

LNG, BOG 물성추산을 위한 열역학 모델 개발 (I)

- □ Liquid
 - Benedict-Webb-Rubin-Starling (with necessary data)
 - Lee-Kesler-Ploecker (mainly hydrocarbons)
 - API (mainly hydrocarbons)
 - Rackett
 - Costald
 - LIBRARY
- □ VAPOR:
 - All Equations of State

Critical Compressibility Factors

- Experimental values for critical compressibility:
 - 0.2880 for CH4
 - 0.2840 for C2H6 &
 - 0.2800 for C3H8

PR and SRK equation of state are still used to estimate phase equilibria calculation for non-ideal systems since what is the most important thing in the design of chemical process is K-values, *not the liquid densities.*

Density Methods

Equations of State

- 2-parameter cubic equations of state (SRK, PR)
 - These equations are acceptable for calculation of vapor density but not generally not acceptable for liquid density, even for hydrocarbons. Error in the liquid is about 15%. SRK is better for C1 and C2, PR is better for C5 – C8, both are bad for C9+.
 - Because of this, our SRK and PR CEOS use the API density method for the liquid density.
- 3-parameter cubic equation of state (TCC)
 - A 3rd parameter has been added to improve the density calculations for this cubic EOS.

Density Methods

 This density method uses the density of the component at 60 F and weight-averages it to get a mixture density at 60 F. This is then corrected to the temperature of interest using the equation.

$$\rho_{act} = \rho_{60} \left[\frac{C_{act}(T_r, P_r)}{C_{60}(T_r, P_r)} \right]$$

- C₆₀ and C_{act} are found based on the Kays rule reduced temperature and pressure from the API Technical Data Book.
- This method is only for liquid densities and is recommended only for $T_r < 0.9$. For hydrocarbon systems, the accuracy is usually within 1%.

LNG, BOG 물성추산을 위한 열역학 모델 개발 (II): 순수성부의 증기압을 잘 추산하기 위한 Alpha form의 개발을 중심으로....

Alpha form: All Started with RK EOS

- The RK EOS (1949) was the first to introduce the concept of a temperature dependency in the attractive term of the vdw EOS.
- Thus the alpha function used in RK equation of state is given by:

$$\alpha_i(T) = \frac{1}{T_{ri}^{1/2}}$$

Thermodynamic researchers prior to Redlich-Kwong have known that "a" is

Requirements for Alpha form

- □ Requirements for alpha form:
 - The α function must be finite and positive for all temperature.
 - The α function must equal unity at the critical point.
 - The α function must approach a zero value as the temperature approaches infinity.
- The trend from now is to set the coefficients of alpha function component dependently by regressing the experimental vapor pressure data vs. temperatures.

LNG, BOG 물성추산을 위한 열역학 모델 개발 (III): ^{혼합물의} K-value (기액 평형 관계식)을 잘 추산하기 위한 Mixing rules의 개발을 중심으로....

Binary Interaction Parameters (1 of 2)

- Good representation of vapor-liquid equilibria:
 "Adequate mixing rules"
- \Box CO₂-ethane at 270K
- Dashed line: SRK with $k_{ij} = 0$
- Straight line:Regressed

Binary Interaction Parameters (2 of 2)

- \Box Using nonzero K_{ii} generally improves VLE representation
- \Box K_{ij} is not a magic number. It corrects for the inadequacy of the model, or the deficiency in corresponding states theory.
- \Box K_{ij} for on EOS should not be used directly in another EOS.
- The order of expected accuracy for VLE calculations using *K_{ij}* obtained:
 regressed from data > estimated from correlation > zero value

Advanced (Panagiotopoulos) mixing rules

- Panagiotopoulos and Reid proposed an asymmetric mixing rule containing two parameters for SRK and PR equations of state (denoted as SRKP and PRP).
- □ The Panagiotopoulos mixing rule

1

$$a = \sum_{i} \sum_{j} x_{i} x_{j} a_{ij} \qquad b = \sum_{i} x_{i} b_{i}$$
$$a_{ij} = \sqrt{a_{i} a_{j}} \left[\left(1 - k_{ij} \right) + \left(k_{ij} - k_{ji} \right) x_{i} \right]$$

Refer to Discussion 14.hwp

Fugacity Coefficient of Component 'i':

General Two Parameter Cubic EOS and Panagiotopoulos Mixing Rules

The fugacity coefficient expression of component 'i' in a mixture applicable to general two parameter equation of state and Panagiotopoulos mixing rules are as:

$$\ln \hat{\phi_{i}} = \frac{2\overline{b} - b_{i}}{b} (Z - 1) - \ln \frac{P(v - b)}{RT} + \left[\sum_{l} x_{l} (a_{lk} + a_{il}) - \sum_{l} \sum_{w} x_{l}^{2} x_{m} \sqrt{a_{l} a_{m}} (k_{lm} - k_{ml}) + x_{i} \sum_{l} x_{l} \sqrt{a_{i} a_{l}} (k_{il} - k_{li}) + \frac{a(2\overline{b_{i}} - b)(u - 4w)}{b(4w - u^{2})}\right] \times \frac{1}{\sqrt{u^{2} - 4w}} \ln \frac{2v + b(u - \sqrt{u^{2} - 4w})}{2v + b(u + \sqrt{u^{2} - 4w})}$$

Fugacity Coefficient of Component 'i': SRK

The fugacity coefficient expression of component 'i' in a mixture applicable to SRK equation of state is as:

$$\ln \hat{\phi}_{i} = -\ln \frac{P(v-b)}{RT} + \frac{b_{i}}{b} (Z-1) + \frac{a}{bRT} \left[\frac{2\overline{a}_{i}}{a} - \frac{b_{i}}{b} \right] \ln \left(\frac{v+b}{v} \right)$$
where:
$$\overline{a}_{i} = \sum_{l} x_{i} a_{li}$$
Refer to Discussion 10.hwp

Fugacity Coefficient of Component 'i': PR

The fugacity coefficient expression of component 'i' in a mixture applicable to PR equation of state is as:

$$\ln \hat{\phi}_{i} = \frac{b_{i}}{b} (Z-1) - \ln \frac{P(v-b)}{RT} + \frac{a}{2\sqrt{2}bRT} \left[\frac{2\overline{a}_{i}}{a} - \frac{b_{i}}{b} \right] \ln \frac{v + (1-\sqrt{2})b}{v + (1+\sqrt{2})b}$$
where:

$$\overline{a}_{i} = \sum_{l} x_{i} a_{li}$$
Refer to Discussion 11.hwp

실제 공정에 적용 (1): LNG 기지 공정 개요도

실제 공정에 적용: LNG 재액화기

□ BOG 재 액화기(R/C) 내 혼합물질들의 상 거동 현상 규명.

- <u>재 액화기로 인입되는 BOG에 대하여</u>
 - 1) 다양한 LNG 조성(Typical, Lean, Rich, Max N₂)에서 발생되는 BOG의 조성 및 물성 추산
- <u>온도, 압력 변화에 따른 열역학적인 물성 규명</u>
 1) 인천, 평택, 통영 세 기지에서 재 액화기로 인입되는 BOG의 온도조건이 틀림.
 - 2) 현 운전조건이 아닌 다른 조건에서 분석
- <u>R/C로 인입되는 LNG</u>
 - 1) LNG 조성에 따른 인입 조건에서의 열역학적인 물성 규명
 - 2) BOG 조성, 인입온도, 압력변화에 따른 LNG 혼합률에 따른 재액화 LNG(R/C 토출라인)의 열역학적인 상태 규명
 - 3) Two-stage Compression System에서 총 동력을 최소화시키는
 - 최적의 중간 압력의 결정 문제
 - 4) 재액화기로 주입되는 LNG 최소량의 결정

실제 공정에 적용: LNG 재액화기

실제 공정에 적용: LNG 재액화기

Stream Number	1	2	3	4	5
N2	0.34	0.34	0.04	0.04	0.07
C1	99.64	99.64	89.26	89.26	90.21
C2	0.02	0.02	8.64	8.64	7.85
C3	0.00	0.00	1.44	1.44	1.31
iC4	0.00	0.00	0.27	0.27	0.25
nC4	0.00	0.00	0.35	0.35	0.32
iC5	0.00	0.00	0.00	0.00	0.00
nC5	0.00	0.00	0.00	0.00	0.00
Temperature(°C)	-120.00	26.30	-158.95	-157.89	-135.91
Phase	G	G	L	L	L
Pressure(Kg/cm ² G)	0.15	8.85	1.13(A)	8.85	8.85
Flowrate (Kg/hr)	50000	50000	550000	550000	600000

기존재액화기개선 (1): Pre-cooler 설치

기존 재액화기 개선 (2): Intercooler 설치

- □ Consider the above two-stage compression system.
 - <u>Determination of Optimum Intermediate Pressure</u>
 1) Find the optimum intermediate pressure which minimized the summation of compressor power.
 - <u>Determination of Minimum Compressor Power</u>
 1) Find the minimum compressor power at the optimum intermediate pressure.

향후 연구 내용 및 기대효과 (1):

- 천연가스 혼합물의 열역학적 상 거동 해석에 가장 적합한 열역학 모델식의 선정 가이드 라인 작성.
 - <u>삼차형 상태 방정식에 대하여</u>
 1) Functional Form에 대한 분석: 기상 및 액상의 밀도 추산
 2) API Method, Rackett Method에 대한 분석
 - Alpha Formulation에 대하여: 순수성분의 증기압 추산을 위하여
 - 1) Redlich-Kwong Alpha Form
 - 2) Soave's Original Alpha Form
 - 3) Component-dependent Alpha Form
 - <u>Mixing Rules에 대하여: 혼합물의 K-value 추산을 위하여</u>
 - 1) van der Waals: One fluid mixing rule
 - 2) Panagiotopoulos mixing rules
 - 3) Composition-dependent mixing rules
 - 4) 혼합물 중의 'i' 성분의 퓨개시티 계수의 유도 및 적용

향후 연구 내용 및 기대효과 (2):

□ BOG 재액화 공정에 대해.....

- BOG에 대한 LNG의 혼합비의 최소화함으로써
 1) LNG 승압펌프 동력 최소화
 2) LNG 2차 펌프 동력 최소화
- <u>재액화기의 운전압력(현 8.5Kg/cm²G)을 떨어뜨림으로써</u>
 1) BOG Compressor 동력 최소화
 2) BOG Compressor 동력 감소분 > Pump 동력의 증가분
 3) (BOG Compressor 동력)-(Pump 동력)을 최대화 시키는 최적의 재액화기의 운전 압력 결정
- <u>Pre-cooler를 설치 함으로써</u>
 1) LNG 혼합비율의 감소를 통한 Pump 동력의 최소화
- <u>Intercooler를 설치 함으로써</u>

1) 재액화기로 주입되는 BOG의 온도를 떨어뜨림으로써 LNG 혼합비율의 감소를 통한 Pump 동력의 최소화

2) BOG Compressor들의 총 소요 동력의 최소화

The End....

