C13 Isotope Recovery From Natural Gas Using Batch Distillation Column

Dr. Jungho Cho, Professor Department of Chemical Engineering Dong Yang University

국외 연구 동향: 일본 Tokyo Gas

Relative Volatility for ¹²CO/¹³CO System

In case of distillation of carbon monoxide, ¹²CO has about 0.5% higher vapor pressure than ¹³CO, or the relative volatility for the ¹²CO/¹³CO system is 1.005.

From "Isotope Separation by Distillation"

Alpha for ¹²CO/¹³CO as a Function of Composition

X(¹² CO)	Y(¹² CO)	Alpha
0.1	0.100443	1.004925
0.2	0.200787	1.004924
0.3	0.301033	1.004926
0.4	0.401180	1.004926
0.5	0.501229	1.004928
0.6	0.601179	1.004927
0.7	0.701032	1.004931
0.8	0.800786	1.004932
0.9	0.900442	1.004933

Relative Volatilities btn C12 & C13

Definition of relative volatility of component 'i' and component 'j' is:

$$\alpha_{ij} = \frac{K_i}{K_j} = \frac{\left(P_i/P\right)}{\left(P_j/P\right)} = \frac{P_i}{P_j} \quad (cc)$$

(component '' is defined as more volatile than component 'j')

Shortcut: Fenske Equation for Minimum Number of Stages

 Minimum number of stages can be determined using Fenske equation

$$N_{\min} = \frac{\ln\left[\frac{x_D/(1-x_D)}{(1-x_B)/x_B}\right]}{\ln\alpha} = \frac{\ln SF}{\ln\alpha}$$

□ SF (separation factor) is defined as:

$$SF = \left(\frac{x_{D,LK}}{x_{D,HK}}\right) \left(\frac{x_{B,HK}}{x_{B,LK}}\right)$$

Feedstock Characterization

Components	Mole Percent
12CO	50.0
13CO	50.0
Flow-rate (Kg-mole/hr)	100.0

C13 Property Calculation Using SRK

We used Soave Modified Redlich-Kwong equation of state for the modeling of methane isotope separation.

$$P = \frac{RT}{V-b} - \frac{a \cdot \alpha}{V(V+b)}$$

- Parameter 'a' and 'b' are functions of critical temperature and pressure.
- Alpha value is functions of reduced temperature and acentric factor.
- Acentric factor of 13CO was adjusted to accurately estimate vapor pressure at a given temperature.

Comparison of ¹³CO Vapor Pressure btn Correlation & Modified SRK Equation

 Acentric factor of ¹³CO, ω was modified as 0.095 to fit the vapor pressure vs. temperature.

Comparison of ¹³CO Vapor Pressure btn Correlation & Modified SRK Equation

Temperature	Vapor Pressure of ¹³ CO	Vapor Pressure of ¹² CO
70.0 K	16.07 kPa	16.25 kPa
80.0 K	69.44 kPa	69.98 kPa
90.0 K	210.46 kPa	211.56 kPa

 ¹²CO has about 0.5% higher vapor pressure than ¹³CO at 90.0 K.

$$\left|\frac{211.56 - 210.46}{211.56}\right| \times 100 = 0.52\%$$

The End....

Slide 11