Chemical Product Design

Sungwoo Cho and Chonghun Han Intelligent Process Systems Laboratory School of Chemical and Biological Engineering Seoul National University

PART XIII. Product Development Economics

Product Development Process

Cash Flow

What is the ultimate objective ?

To maximize shareholder return

- at any cost ?
- When ?
- *How* ?
 - (1) Stock appreciation ?
 - (2) IPO
 - (3) Dividends ?
- What about providing Customer Satisfaction ?
- Satisfying "stakeholders"

Customers + employees + community (local, state, and national) + shareholders + ...

How about ?

- To maximize shareholder return subject to good practice constraints

that a customer will pay a sufficient price for to assure a profit.

Gross Profit = Price – Direct Cost

Net Profit = Gross profit – allocated expenses

To assure a profit, companies act to produce products that can

command the highest prices and cost the least to make

What Other Product Issues Drive Companies Besides Profit

Valuation

Future Earnings

- Products in the pipeline

Acquisition Potential

- Strategic fit of products with another

company

Break-up Potential

- Value of a conglomerate as the sum of its parts

Tax Consequences

• Etc.

Cash Flow

- Require for Business Continuity
 - To pay expenses
 - To pay interest on dept
 - To pay dividends to stockholders

To Grow Business

- To invest in new programs, technologies
- Equipment
- Inventory and Receivables
- Acquisitions etc.
- Best Measure of Financial Perform.
 - Used by Wall Street

What Other Product Issues Drive Companies Besides Profit

Understanding Cash Flow.....

Activities which bring cash into the business	Business Activity	Personal Activity
OperatingFinancing	 Receiving payments from customers Borrowing money Selling shares of the company 	 +) * Cashing out paychecks * Receiving a car loan / home mortgage
Activities which remove cash from the business Operating Financing	 Paying our expenses for Salaries Materials Equipment Paying interest on debt 	 Paying monthly expenses Food Utilities Insurance Paying monthly car payment /
	 Paying dividends to shareholders Cash Flow of Business 	Paying monthly car payment / mortgage = Cash in the Bank

Investment Alternatives

The object is to take capital earned, borrowed or from investors and allocate it in a fashion that earns the highest return for the shareholders of the company

There needs to be an appropriate balance of long and short term returns

More complex and as simple as a matter of dollars and cents

Question:

What are some investment alternatives for a company ?

Investment Alternatives

What are typical investment alternatives ?

Invest in

- Product line **a** or product line **b**
- Advertising
- Information systems
- A new factory
- Buy-bank companies stock
- Acquisition
- Employee bonus or salary raise
- Hire more HR personnel
- *Etc*.

The Criteria is:

Which investment(s) gives the highest return ?

Principal of Equivalence:

The state of being equal in value

- Amount
- Discount assumptions
- Time transactions occur

→ All investments must be normalized to give equivalence !!!

Net Present Value

Net Present Value of an Investment

Holds for all investments

Takes into account inflation, cost of capital, corporate expectations

of return

Reduces all times to a common point

Calculation of Net Profit Value

Calculation of Payback Period

 $\sum_{t=0}^{n} \left| \frac{A_t}{(1+r)^t} \right| = 0$

$$NPV = \sum_{t=0}^{n} \frac{A_t}{(1+k)^t}$$

where k is the expected rate of return A sub t is the cash flow in the period t

where r is rate and
$$A_t$$
 is the cash flow in period t

Compare Product Returns on Investment

To Calculate NPV, First Assume a Cash Flow

Calculation of NPV and Payback Period of an Investment

Year	Cash]	Discounted		ash Flow	Discount rate
1	-1000	\$	(909)	\$	(909)	10%
2	-2000	\$	(1,653)	\$	(2,562)	
3	-3000	\$	(2,254)	\$	(4,816)	
4	-1000	\$	(683)	\$	(5,499)	
5	0	\$	-	\$	(5,499)	
6	1000	\$	564	\$	(4,934)	
7	2000	\$	1,026	\$	(3,908)	
8	6000	\$	2,799	\$	(1,109)	
9	10000	\$	4,241	\$	3,132	
10	5000	\$	1,928	\$	5,060	
11	2000	\$	701	\$	5,761	
12	2000	\$	637	\$	6,398	
Net Present Value=		\$	6,398			
Payback			9 years			

Assume all cash is spent at end of perid

\$

Calculation of NPV and Payback Period of an Investment

1	-1000	\$	(769)	\$	(833)	30%
2	-2000	\$	(1,183)	\$	(2,016)	
3	-3000	\$	(1,365)	\$	(3,382)	
4	-1000	\$	(350)	\$	(3,732)	
5	0	\$	-	\$	(3,732)	
6	1000	\$	207	\$	(3,525)	
7	2000	\$	319	\$	(3,206)	
8	6000	\$	736	\$	(2,471)	
9	10000	\$	943	\$	(1,528)	
10	5000	\$	363	\$	(1,165)	
11	2000	\$	112	\$	(1,053)	
12	2000	\$	86	\$	(967)	
Net Present Value=		\$	(904)			
Payback		never	breaks even			

Assume all cash is spent at end of period

Calculation of Internal Rate of Return (IRR) for a Project

Calculate a discount rate (k)
 that reduces the NPV of a project
 to zero

$$NPV = 0 = \sum_{t=0}^{n} \frac{A_t}{(1+k)^t}$$

What's wrong with this picture ?

Predictions are very difficult – especially when they involve the future.

- Extrinsic

- (a) Marketing Change
- (b) Competitor's Change
- (c) Macro-economic conditions change

- Intrinsic

- The analyses are based on flawed assumptions
 - Program delays
 - Manufacturing snafus
 - Technologies not ready
 - Externalities (out of your control)
 - Many other reasons

Then why does everybody do it ???

- Reduce (Increase) Price
 - Change Product Development Time
- Consider competitive response

Some Thoughts on How to Increase Profits

P=SP-C 1. Increase Selling Price

Increase Customer Value

- Put extra features in product which require little marginal cost
- Provide extra service
- Target less competitive segment of the market
- Get to market before competition
- Price at the maximum the customer is willing to pay

Price models should reflect customer value – not cost (except in government contracts if you wish to avoid jail)

Note in English gardening magazine: Even though seed sales are at an all time high, the price is not expected to come down

Some Thoughts on How to Increase Profits

P=SP-C 2. Decrease Selling Price

Some Thoughts on How to Increase Profits

P=SP-C

3. Decrease Product Development (NRE) and Manufacturing (RE) Costs

Do it right the first time

Don't commit to detailed design until you have customers specifications firm then don't change

• Build a manufacturable product. Bring manufacturing in early

Don't overload with features that the customer doesn't want that are costly to develop

 Manage tightly to schedule with appropriate risk and risk reduction plan

• Use rigid phase exit criteria

All of these consistent with Fast C/T

Some Thoughts on How to Increase Profits

P=SP-C 4. Decrease Cycle Time for Product Development

• Effect on product price in bring first to market ?

Effect on total revenue of turning out products faster ?

Effect on Cost ?

Assume the decision is made to invest in developing new products

How do you make the decision on which new product to invest

in?

What are the criteria for this decision making process ?

How do we maximize profit ?

- in the long range

- in the short range

A Portfolio of 6 Programs

How do you allocate ???

Not by NPV and Payback Period alone

But.....

- Portfolio Balance (Long / Short)
- Strategically Important vs. Tactically Important
- Product Families and Platforms
- Future Sales Model
- Available Resource
 - People and Dollars
- Customer Demands

Data for Rank Ordered List

Project Name	IRR	NPV	Strategic Importance	Probability of Technical Success
Alpha	20 %	10.0	5	80 %
Beta	15 %	2.0	2	70 %
Gamma	10 %	5.0	3	90 %
Delta	17 %	12.0	2	65 %
Epsilon	12 %	20.0	4	90 %
Omega	22 %	6.0	1	85 %

Rank Ordered by Discounting Returns by Probability of Success

Project Name	IRR	NPV	Strategic Importance	Ranking Score
Alpha	16.0 (2)	8.0 (2)	5 (1)	1.67 (1)
Beta	10.8 (4)	18.0 (1)	2 (2)	2.33 (2)
Gamma	11.0 (3)	7.8 (3)	3 (4)	3.33 (3)
Delta	18.7 (1)	5.1 (4)	2 (6)	3.67 (4)
Epsilon	9.0 (6)	4.5 (5)	4 (3)	4.67 (5)
Omega	10.5 (5)	1.4 (6)	1 (4)	5.0 (6)

Product Development Economics

Whatever the methodology, the choices you make have an *Opportunity Cost*

Product Development Resource is always finite

Most companies with good engineering and marketing resource are in a "target rich" environment

Thus in this environment, allocation is a zero sum game

An investment that ties up resource – even a "good investment"

(High NPV) can crowd out a better (sometimes much better) investment