Chemical Product Design

Sungwoo Cho and Chonghun Han Intelligent Process Systems Laboratory School of Chemical and Biological Engineering Seoul National University

PART I. Introduction

- Changes in Chemical Industry & Engineering

- Characteristics of Chemical Product Design

Chemical product design

However,

We begin by defining what we need

We think of ideas to meet this need

We then select the best of these ideas

Finally, we decide what the product should look like

and how it should be manufactured

Trend of world chemical industry

1950s ~ 1970s

1970s ~ 1980s

Growth and diversification era

- Growth that exceeds GDP growth rate
- Golden age for chemicals
- Focus on commodity chemicals

Restructuring and globalization era

- Growth has slowed : high competition & low profitability
- Economy of scale : large volume production
- Restructuring & consolidation
- Transfer of manufacturing plant and Asian development

1990s ~ 2000s

* 5

**

Specialization era

- Discovery of new technology : NT, BT
- New paradigm : Value Preservation → Value Creation
- Some company : focus their growth on chemical products.

Trend of world chemical industry

Changes in the chemical industry

Fiber	1948	1969	1989
Cotton, Wool	4353	4285	4794
Synthesis	92	3480	8612

Growth of textile fibers (10⁶ lbs/year)

Source: Spitz(1998); U.S. Department of Commerce

However, from 1970 to 1990, the synthetic textile fibers grew by less than 5% per year. At this time, the industry stayed profitable by using larger and larger facilities.

 \rightarrow Bigger profits came from consolidating production into bigger plants, designed for greater efficiency in making one particular product. From 1950 to 1970 the chemical industry produced ever increasing amounts of synthetic textile fibers. Over these decades, while the production of natural fibers was about constant, the production of synthetic grew 20% per year.

Stay Profitable ?

- 1. Leave chemical business
- 2. Focus exclusively on commodities
- 3. Focus their growth on specialty chemicals
- \rightarrow Many chemical companies are turning

focus to specialty chemicals. ex) Kodak, 3M

Trend of world chemical engineering

K. M. Ng, "MOPSD: a framework linking business decision-making to product and process design," *C&CE*, **29**, 51-56 (2004).

1970s	 Improvement of equipment and process performance Building on a better understanding of transport phenomena, and improved simulation and optimization techniques.
1980s	 Pinch technology and advanced control Pinch technology to minimize energy consumption. Advanced control to maximize productivity.
1990s	 The entire supply chain for additional savings Aspentech, SAS, PricewaterhouseCoopers Offering a wide range of tools for enterprise resource planning, demand, production and distribution planning, etc.

Trend of world chemical engineering

cost for downstream petroleum processing in the US

C. J. Kim, "Supply chain management in process industry," *Keynote presentation at PSE Asia*, Taipei, 2002.

Due to competition, the gross margin has also decreased by the same magnitude

=> resulting in no gain in net margin

K. M. Ng, "MOPSD: a framework linking business decision-making to product and process design," *C&CE*, **29**, 51-56 (2004).

2000s

- The cumulative effects of research
 - : Ultra-efficient companies for commodity chemicals
 - Few people is needed but profit remains good.

The design and manufacturing of differentiated products

View of the profit margin

Most chemical companies : 8%

- Specialty chemical and pharmaceutical companies: 12% and 20%
- Shift from commodity chemicals to chemical products

Changes in the chemical company: ICI

ICI: British chemical company

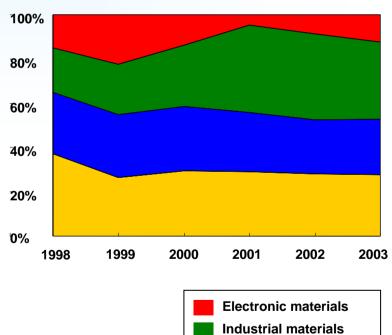

- ✤ 1920s ~ 1990s
 - Mainstay of Bulk chemical industry
 - Products: Commodity chemicals

Ex) Polyester, ethylene, fertilizer, etc.

Present

- Late 1990s: shift from commodities to chemical products
- Products: Chemical products

Ex) Perfume, flavorings, and coatings for electronics engineering.


- Chemical product is the major product in ICI.
- Manufacturing plants for chemical product are located in the developed countries such as USA, UK, and Netherland. However manufacturing plants for commodity chemicals are located in the developing countries such as Pakistan, India, and Argentina.

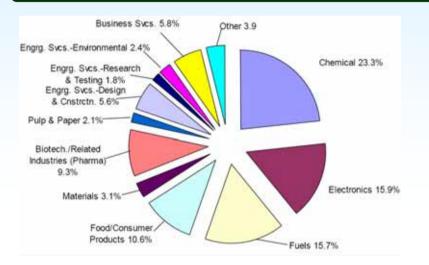
Changes in the chemical company

Foreign	
Company	Results
ЗМ	 Composite conductors are deliver up to 3 times more power 2003 R&D 100 Award Winner for Innovation
Kodak	 Sustainable development promotes environmentally- conscious product design The Queen's Award Enterprise
Dow	 Develop "Real" with wood and metal Maintain the world plastic leader Preoccupy many application fields

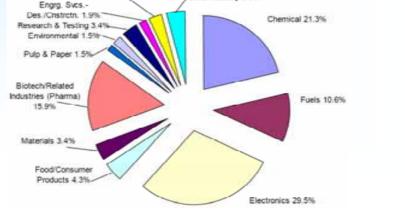
Korea

Sales ratio of chemical company

Specialty polymer

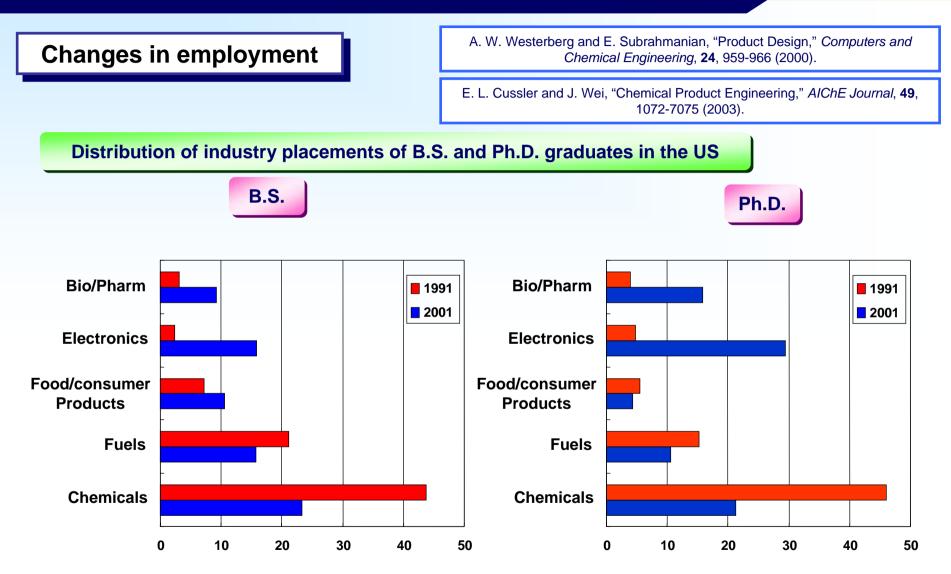

Commodity

Changes in employment


I. E. Grossmann, "Challenges in the New Millennium: Product Discovery and Design, Enterprise and Supply Chain Optimization, Global Life Cycle Assessment," *Computers and Chemical Engineering*, **29**, 29-39 (2004).

Business Svcs. 2.9%

Distribution of 2000-2001 industry placements of B.S. and Ph.D. graduates in the US



At the B.S. level chemicals, fuels and food/consumer product companies hired almost 50% of the students. Electronics hired as many as the fuels companies (16%), while the share of biotechnology and pharmaceutical, and engineering services and consulting, was close to 10% for each.

Other Industry 3.9%

At the Ph.D. level the trends are similar, although chemicals, fuels and consumer products show a share of only 35%, which is slightly above electronics at 30%. Also biotechnology and pharmaceuticals has a 16% share.

=> About half of the chemical engineer are entering product-oriented companies.

Changes in what chemical engineers do

The emergence of products as a focus for chemical engineers implies change in what chemical engineers do.

- Reaction engineering
- Unit operation

Present

Past

New role for chemical engineer

- Waiting for the marketing division to tell what chemicals needed to be made.
- Waiting for the marketing division to tell what amounts needed to be made.

Product design

Affects all people in the world

- Changes and improves people's lives
- A strong determinant in national standards of living

Fundamentally drives our economic system by

- Providing the link between what people need and want (marketing) and what an enterprise can make (production)
- Providing the link between new knowledge on what is impossible (research) and new useful objects (product)

✤ Is highly creative

The output never existed before

Is highly complex

Involves the linked contributions of many different skills

Product design

Is highly evolving

 Learns from the past, anticipates the future, subject to rapid change, highly timing dependent

Can be esthetically pleasing

- the product
- sometimes the process

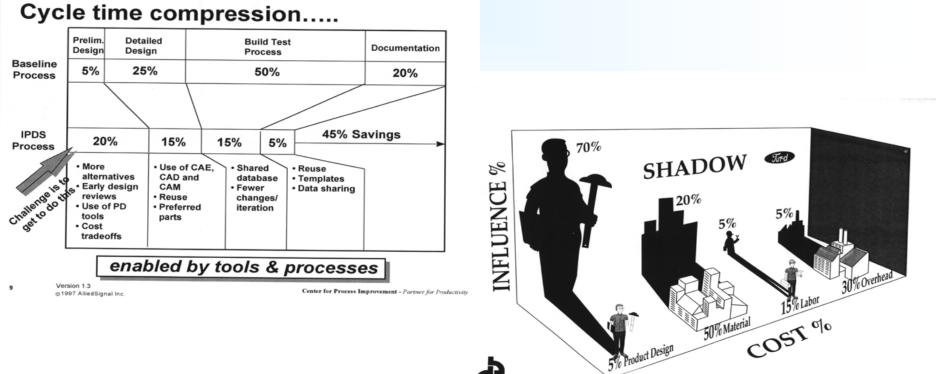
✤ Is iterative process

Assessment and refinement


Invariably involves multivariate trade-offs

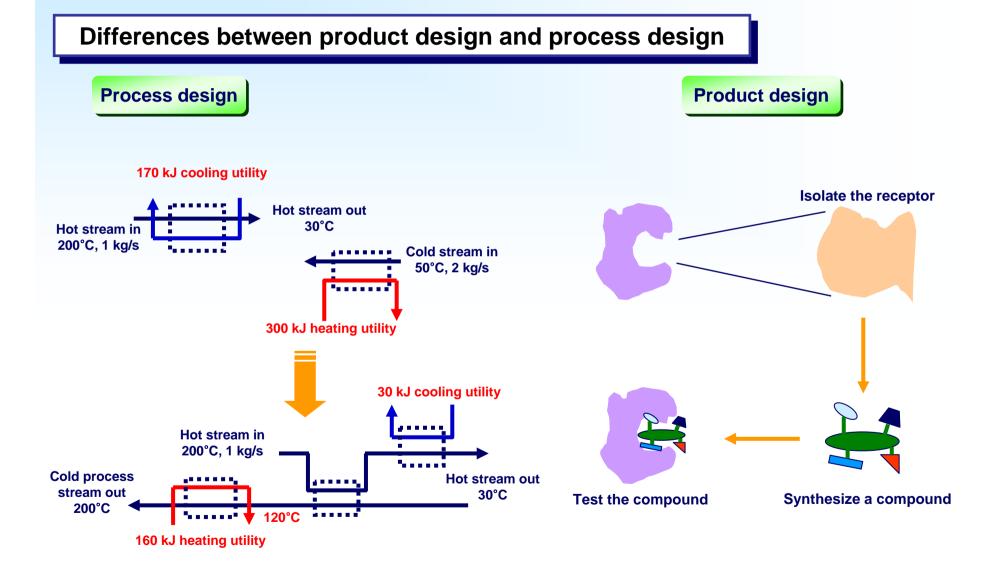
- Between the other performances
- Between time and performance
- Between cost and performance

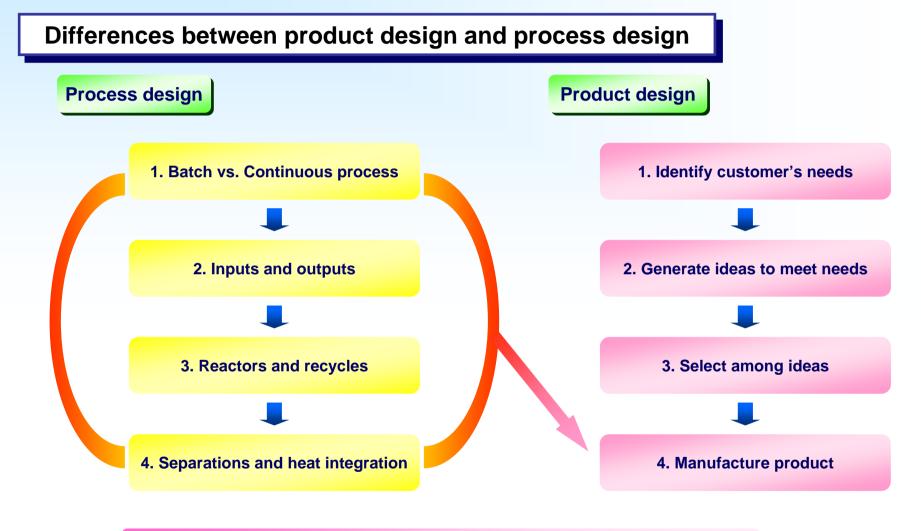
Product design


Is accomplished by project team

- Due to the complexity of multidisciplinary process
- Work apart, coming together periodically to compare notes and keep the entire team informed of process
- Core team and extended team

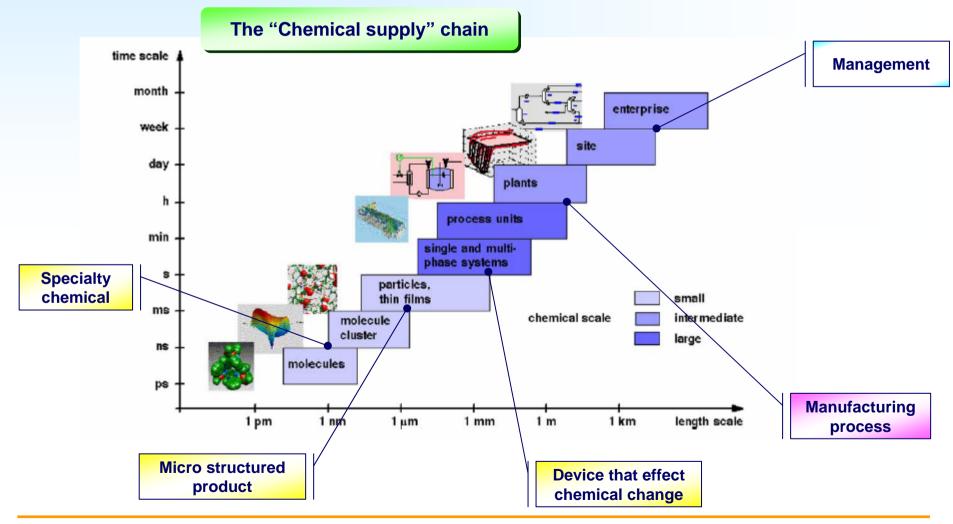
Product design effect




BOOTHROYD DEWHURST, INC.

=> Effect of product design is considerable.

Characteristics of chemical product design


Characteristics of chemical product design

The manufacturing includes all of the process design hierarchy

Characteristics of chemical product design

Scope of chemical product design

References

- ✤ K. M. Ng, "MOPSD: a framework linking business decision-making to product and process design," C&CE, 29, 51-56 (2004).
- C. J. Kim, "Supply chain management in process industry," Keynote presentation at PSE Asia, Taipei, 2002.
- I. E. Grossmann, "Challenges in the New Millennium: Product Discovery and Design, Enterprise and Supply Chain Optimization, Global Life Cycle Assessment," Computers and Chemical Engineering, 29, 29-39 (2004).
- A. W. Westerberg and E. Subrahmanian, "Product Design," Computers and Chemical Engineering, 24, 959-966 (2000).
- E. L. Cussler and J. Wei, "Chemical Product Engineering," AIChE Journal, 49, 1072-7075 (2003).
- E. L. Cussler and G. D. Moggridge, "Chemical Product Design," Cambridge University Press, Cambridge, UK, 2001.