# **Chemical Product Design**

Sungwoo Cho and Chonghun Han Intelligent Process Systems Laboratory School of Chemical and Biological Engineering Seoul National University

# **PART VII. Concept Generation**

- Clarify the Problem
- External Search
- Internal Search
- Systematic Exploration
- Reflect on the Process



### Procedure



### **Concept Generation Process**



### **Problem Decomposition**

### **Example – Power Nailer**



### **Problem Decomposition**

#### **Function Diagram**



### **External Search**

### **Hints for Finding Related Solutions**

### Lead Users

- benefit from improvement
- innovation source

### Benchmarking

- competitive products

#### ✤ Experts

- technical experts
- experienced customers

#### Patents

- search related inventions

#### ✤ Literature

- technical journals
- trade literature

### **Internal Search**

**Hints for Generating Many Concepts** 

- Suspend judgment
- Generate a lot of ideas
- Infeasible ideas are welcome
- Use graphical and physical media
- Make analogies
- Wish and wonder

- Solve the conflict
- Use related stimuli
- Use unrelated stimuli
- Set quantitative goals
- Use the gallery method
- Trade ideas in a group



Concept from motor-driven double-flywheel nailer patent (U.S. Patent 4,042,036).

The accompanying text describing the patent is nine pages long.



In this solution concept, a solenoid compresses a spring and then release it repeatedly

in order to drive the nail with multiple impacts.



Multiple solutions arising from the combination of a motor with transmission, a spring, and single impact. The motor winds a spring, accumulating potential energy which is then delivered to the nail in a single blow.



Solution from the combination of a motor with transmission, a spring, and multiple impacts.

The motor repeatedly winds and release the spring, storing and delivering energy over several blows.



Multiple solutions arising from the combination of a linear motor, a spring, and single impact. A linear motor accelerates a massive hammer, accumulating kinetic energy which is then delivered to the nail in a single blow.

![](_page_13_Picture_1.jpeg)

#### One of several refined solution concepts

#### **Chemical Sources of Concepts (Ideas)**

### Natural Product Screening

- During the past century, this has been a major source of complex chemical species

ex) Pharmaceutical industry: aspirin and opium, quinine and colchinine all first came from nature

Other industries: Sunillin is a plant-based antifungal pesticide

Bulletproof jackets are made from same structure of the fibers of

spider's silk

#### Random molecular Assembly

- Not thinking about chemical mechanisms at all

- Have a vague idea of the type of molecule but we are uncertain about its chemical structure

### Combinatorial Chemistry

- Identify possible active ingredients or molecular fragments and to test all of them and in all possible combinations

#### **Three Routes to Chemical Ideas**

| Parameter                          | Natural<br>Product<br>Screening | Random<br>Assembly                   | Combinatorial<br>Chemistry             | Remarks                                                       |
|------------------------------------|---------------------------------|--------------------------------------|----------------------------------------|---------------------------------------------------------------|
| Typical<br>Starting<br>Information | Potions from folk medicine      | Similar chemicals of known structure | Similar chemicals of known structure   | Note that we must<br>have some chemical<br>knowledge to begin |
| Chemical<br>Synthesis              | None                            | Random assembly of known fragments   | Planned assembly of<br>known fragments | We may not know<br>what we have made                          |
| Trials<br>for<br>Efficacy          | Use entire potion               | Use entire product mixture           | Use each known<br>product              | We will discard most<br>of the chemical<br>species present    |
| Chemical<br>Analysis               | Identify active ingredients     | Identify active ingredients          | None                                   | We know what we<br>have made only in<br>the third case        |

*Note*: Natural product screening is well developed and combinatorial chemistry is evolving rapidly. Random assembly is less often used.

#### **Concepts (Ideas) for an Adhesive for Wet Metal**

- 1. Wipe the metal surface with a cloth (F)
- 2. Change the metal's composition
- 3. Change to a new adhesive (V)
- 4. Make the adhesive water absorbing
- 5. Use a plant that sticks to a ship (V)
- 6. Use a natural rubber
- 7. Electrostatically charge the metal
- 8. Put a magnet in the in the current adhesive (R-7)
- 9. Use a super glue (i.e., a cyano acrylate) (V)
- 10. Use a different resin (V)
- 11. Make a resin with a hydrophilic part
- 12. Treat the surface with zeolite
- 13. Use a zinc coating primer
- 14. Spray on a silicone coating
- 15. Use neoprenephenolic as the adhesive (R-59)

F = folly V = vague R = redundant

- 16. Invent an adhesive that reacts with water
- 17. Use a silica gel for surface treatment (F)
- 18. Choose a van der Waals bonding material
- 19. Try ionic bonding (F)
- 20. Use a water scavenger in the adhesive base
- 21. Treat the surface with alkali
- 22. Use corn starch (F)
- 23. Use an adhesive with a functional group that reacts with water
- 24. Use an isocynate with a water reactive part (R-23)
- 25. Inject acidic salt in the metal (F)
- 26. Use more adhesive (F)
- 27. Use a concrete cement
- 28. Choose a water catalyzed polymer
- 29. Choose an adherent with a water reactive part (R-23)
- 30. Use a water scavenging adhesive (R-20)

#### **Concepts (Ideas) for an Adhesive for Wet Metal**

- 31. Add a catalyst to speed up the reaction
- 32. Invent coupling chemistry (V)
- 33. Adapt dental adhesives (V)
- 34. Try a polymer with a protective layer and heat to use
- 35. Use heat catalyzed polymer (V)
- 36. Coat the surface before applying adhesive (V)
- 37. Invent an adhesive that reacts with metal
- 38. Welding with a laser (F)
- 39. Replace the metal (F)
- 40. Solder (F)
- 41. Use a sugar solution (V)
- 42. Use a reversible glue (F)
- 43. Apply a vacuum adhesive (V)
- 44. Use an adhesive developed for the bathroom (V)
- 45. Use candle wax (F)

- 46. Try water based adhesive (R-11)
- 47. Use natural rubber (R-6)
- 48. Use spider web (F)
- 49. Use asphalt
- 50. Eliminate metal from cars (F)
- 51. Use rope to tie up the metals
- 52. Use bubble gum (F)
- 53. Make plastic or fiberglass cars (F)
- 54. Don't use cars (F)
- 55. Use flower tapes (F)
- 56. Blow dry the surface
- 57. Use toluene as the base solvent
- 58. Get water resistance y using nitrocellulose/polyisobutylene
- 59. Use a phenolic group
- 60. Use a zipper (F)

#### **Sorted Ideas for Wet Metal Adhesives**

#### Improvements in Existing Adhesives

- A. Choose a van der Waals bonding material (18)
- B. Use an adhesive + a functional group that reacts with water (23)
- C. Add catalyst to speed up the reaction (31)
- D. Coupling chemistry (32)
- E. Apply a vacuum adhesive (43)

#### Water-Absorbing Adhesives

- A. Make the adhesive water absorbing (4)
- B. Make a resin with a hydrophilic part (11)
- C. Invent an adhesive that reacts with water (16)
- D. Use a scavenger in the adhesive base (20)
- E. Choose a water catalyzed polymer (28)

#### Surface Treatments

- A. Treat surface with zeolite (12)
- B. Use zinc coating primer (13)
- C. Spray on a silicone coating

- D. Treat the surface with alkari (21)
- E. Try a polymer with a protective layer and heat (34)
- F. Blow dry the surface (56)

#### **Sorted Ideas for Wet Metal Adhesives**

#### New Innovations

- A. Change the metal's composition (2)
- B. Use a natural rubber (6)

#### C. Electrostatically charge the metal (7)

- D. Invent an adhesive that reacts with metal (37)
- E. Get water resistance with nitric cellulose / polyisobutylene (58)
- F. Use a phenolic group (59)

#### Curiosities

- A. Use a concrete cement
- B. Use asphalt
- C. Use rope to tie up the metals

Note: The numbers in parentheses refer to previous table. The ideas in boldface are felt to be the most promising