Synthesis of Amino-Functionalized Mesoporous Silica and Application to CO₂ adsorption

Se-Na Kim, Wha-Seung Ahn* Department of Chemical Engineering Inha University

Introduction

Carbon dioxide의 선택적 제거 및 회수를 위하여 실리카 메조 포어 분자체에 아민기를 도입하여 carbon dioxide(CO₂)를 선택 적으로 흡착하는 방법이 연구되어왔으며, coating 및 grafting 방 법 (메조 포어 분체를 합성한 다음 아민기를 나중에 도입시키는 방법) 이 적용 되어왔다. 음이온 계면활성제를 이용하여 아민기 를 직접 합성과정에서 도입하는 방법은 경제적이고 상대적으로 많은 양의 아민기를 효율적으로 도입하는 방법이다. 본 연구에서 는 AMS(Anionic-surfactant-templated Mesoporous Silica)를 문헌의 방법대로 합성하고, 국제적으로 처음 carbon dioxide(CO₂)의 흡착에 적용하였다.

Synthesis of Amino-Functionalized Mesoporous Silica <Scheme of Coating method>

Inha University

Synthesis of Amino-Functionalized Mesoporous Silica <Scheme of Grafting and Silylation method>

Inha University

Synthesis of Amino–Functionalized Mesoporous Silica

< Anionic surfactant templating route >

Synthesis of AMS(Anionic-surfactant-templated Mesoporous Silica) by "S⁻N⁺~I⁻ pathway"

(S⁻ :anionic surfactant, N⁺ :cationic amino group and I⁻ :inorganic species)

surfactant	co-structure directingagent (CSDA)
Lauric acid sodium salt (LAS)	3-aminopropyltriethoxysilane (APS)

Inha University

Experimental

Inha University

• Amine grafting results of MCM-41, pore-expanded-MCM-41

 Conventional MCM-41 and poreexpanded MCM-41 (PE-MCM-41) silicas have been used as surpports for grafting 3-[2-(2aminoethylamino)ethylamino]proryl trimethoxysilane(TRI) and tested for CO₂ adsorption.

Table1. Summary of support material characteristics

support	BET surface area (m ² /g)	pore diameter (nm)	volume (cm³/g)
MCM-41	1140	3.7	1.03
PE-MCM-41	950	10	2.2

 When both supports were grafted under the same conditions, PE-MCM-41 was grafted with slightly larger quantities of amine than MCM-41 for all controlled silane additions.

Figure 1. Effect of the amount of TRI added to the grafting Mixture on the amount of TRI grafted MCM-41 and PE-MCM-41 at 110℃

Reference – Peter J.E. Harlick ;Abdelhamid Sayari. Ind.Eng.Chem.Res. 2006,45,3248.

Characterization of AMS(Anionic surfactant-templated Mesoporous Silica)

Figure 2. XRD of EX-AMS1 (APS:TEOS=0.3:0.7) and EX-AMS2 (APS:TEOS=0.4:0.6)

Figure 3. Adsorption /Desorption isotherm of EX-AMS1 and EX-AMS2

	surface area(m ² g ⁻¹)	pore volume(cm ³ g ⁻¹)	pore radius(nm)
EX-AMS1(APS:TEOS=0.3:0.7)	430	0.32	4.6
EX-AMS2(APS:TEOS=0.4:0.6)	372	0.19	4.7

Table 2. BET of EX-AMS1 and EX-AMS2

Inha University

✤ TG-DTA

Figure 6. TG-DTA EX-AMS1 and EX-AMS a) EX-AMS1 (APS:TEOS=0.3:0.7) ,b) EX-AMS2 (APS:TEOS=0.4:0.6)

• CO₂ Adsorption

- 25℃ adsorption-150℃ desorption (5%CO₂/95%He)
- Drying Temperature 50 ℃

Inha University

• CO₂ Adsorption

25℃ adsorption-110℃ desorption (5%CO₂/95%He)
Drying Temperature 100 ℃

• Result of CO₂ Adsorption Capacity of EX-AMS

Material	Drying Temperature	Amount grafted (mmol(N)/g(cat*))	Adsorption Capacity (mg(CO ₂)/g(cat*)	Adsorption Capacity (mg(CO ₂ /mmol(N)
EX-AMS1 (APS:TEOS=0.3:0.7) [25℃ adsorption- 150℃ desorption]	50	3.8	88.7	23.3
EX-AMS2 (APS:TEOS=0.4:0.6) [25℃ adsorption- 150℃ desorption]	50	4.0	112.6	28.2
EX2-AMS2 (APS:TEOS=0.4:0.6) [25℃ adsorption- 110℃ desorption]	100	4.0	151.4	37.8

Results & conclusions

Material	Amount grafted (mmol(N)/g(cat*))	Adsorption Capacity (mg(CO ₂)/g(cat*))	Adsorption Capacity (mg(CO ₂)/mmol(N)
TRI-grafited MCM-41 ^{#1}	5.6	42.6	7.6
TRI-grafited Pore expanded- MCM-41 ^{#1}	5.9	62.0	10.5
EX-AMS 1 (APS:TEOS=0.3:0.7)	-	88.7	23.3
EX-AMS 2 (APS:TEOS=0.4:0.6)	-	112.6	32.2
EX2-AMS 2 #2 (APS:TEOS=0.4:0.6)	_	151.4	37.8

#1 TRI-grafted MCM-41, TRI-graftedpore expanded MCM-41 : ○ Reference - Peter J.E. Harlick ;Abdelhamid Sayari. Ind.Eng.Chem.Res. 2006,45,3248. #2 Drying temperature 100℃

*The CO₂ adsorption capacity of EX-AMS was significantly higher than that of TRI-grafited-MCM-41 and TRI-grafited-PE-MCM-41.