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Objectives

 Study on the hydrodynamics of gas and solid particle flows in a 
pilot-scale dual fluidized bed (DFB) gasifier using a 
computational fluid dynamics (CFD) code (Fluent, USA).

 Examine the effects of operating conditions on the solid holdup 
and solid circulation rate of the bed materials from the both 
experiment and simulation.

 Examine the performance of the loop-seal at various operating 
conditions

 Predict the solid holdup and solid circulation rate of the particle 
flow for the hot rigs in the DFB gasifier.
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Gasification in a DFB gasifier
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LVFB: Low-velocity Fluidized Bed
HVPR: High-velocity Pneumatic Riser

Technical choice for DFB gasification

1. riser
2. cyclone
3. ball valve
4. downcomer
5. BFB gasifier
6. loop-seal
7. air box 

Pilot-scale DFB gasifier (30kWth)
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Gasification Combustion

Steam Air

Coal
Additional 

Fuel

Cooled silica sand
Char and Ash

Heated silica sandRaw syngas:

CO, H2, CH4

CO2, H2O

Flue gas:

O2, N2, CO2, H2O



Multiphase models (1/2)
Disctrete Phase Model

-Useful for dilute flows

-Particle volume fraction should be less 
than 10%

-Traces all particles and has detailed 
particle information

-Relatively fast (steady state flow) with 
reasonable particle number

-Easy to handle different particle 
diameters

Eulerian-Eulerian (E-E) model

-More general and sophisticated 
multiphase model

-Can handle both dilute and dense 
flows

-Relatively slower (unsteady flow)

-Relatively difficult to handle 
different particle diameter

Applied to:
Entrained bed or Free fall gasifiers

Applied to:
Fluidized bed gasifiers



Multiphase models (2/2)
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Fluctuation energy conservation of solid particles
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Governing equations of Two-phase E-E model:



Simulation setup
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With 30-35 seconds of real time

Simulation
results
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Simulation parameters

Cell no: 62,000
Cell size: 5mm

Taken from
18 experimental runs



Results and discussion (1/9)

 

t = 0 s t = 1 s t = 2 s t = 3 s t = 4 s t = 5 s
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Solid/gas flow pattern: start up flow

Thanh Nguyen et al. (2010) submitted to Comput. Chem. Eng.



Results and discussion (2/9)
Solid/gas flow pattern: bed expansion
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Seo et al. (2010) submitted to Chem. Eng. J.



Results and discussion (3/9)
Solid circulation rate: Efect of recycle aeration
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Results and discussion (4/9)
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Seo et al. (2010) submitted to Chem. Eng. J.



Results and discussion (5/9)
Solid circulation rate: Effect of vertical aeration position

Vertical aeration height, h/l [-]

0 2 4 6 8 10

So
lid

 c
irc

ul
at

io
n 

ra
te

, G
s [

kg
/m

2 s]

5

10

15

20

25

30

35

40

Experimental
Simulation
Kim et al. (1999)

Run 4

Run 1

Run 5

Run 6

Run 7

(a)

h/l= 1.25           h/l= 2.5          h/l= 3.75          h/l= 5.6            h/l= 8.1

(b) Run 4 Run 1 Run 5 Run 6 Run 7

vertical 
aeration

Seo et al. (2010) submitted to Chem. Eng. J.



Results and discussion (6/9)
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Seo et al. (2010) submitted to Chem. Eng. J.



Results and discussion (7/9)
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Solid circulation rate:Pressure profile across the loop-seal

Seo et al. (2010) submitted to Chem. Eng. J.
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Thanh Nguyen et al. (2010) submitted to Comput. Chem. Eng.



Conclusions
1. A two-dimensional CFD simulation with the multiphase Eulerian 

model incorporating the kinetic theory of solid particles is applied 
to investigate hydrodynamics of a pilot-scale DFB gasifier in the 
cold mode.

2. Hydrodynamic characteristics of the cold DFB gasifier are 
examined by both computational simulation and experiment.

3. The simulation results show a similar trend compared to the 
experiment data and other studies on the fluidized beds from the
literature.

4. The CFD model used in this study predicts well the solid 
circulation rate in the cold DFB gasifier.

5. Optimum vertical aeration position on the loop-seal is obtained 
from both experiment and CFD simulation.

6. Hydrodynamic similarity is obtained from simulation for both cold 
and hot rigs.
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