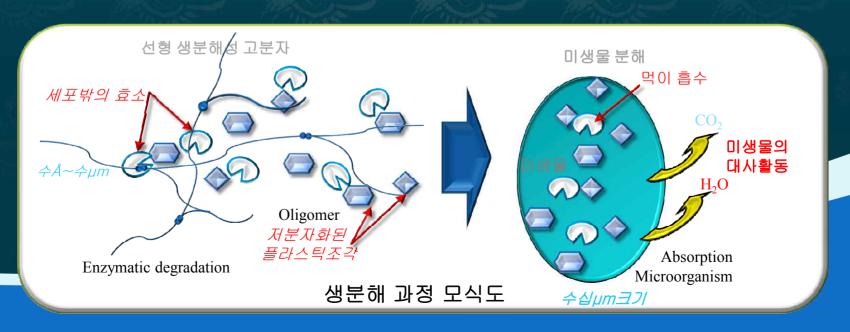
## 생분해성 고분자의 개발 기술과 전망 1

한라대학교 신소재화학공학과 심 재 호


#### 서 론

- ◆ Plastic은 우수한 성능과 기능을 가진 고분자 소재
- ◆ Plastic은 전 세계적으로 100,000,000톤/년 합성
- ◆ 사용 후 대량의 Plastic 폐기물처리, 관리문제 -> 사회문제로 대두
- ◆ 바다로 흘러 들어가는 Plastic은 1년에 수 십 만톤 -> 해양 중에 축적되어 어장 및 해양 생태계 파괴

미생물에 의해 분해 되어지는 생분해성 고분자가 환경에 부하를 줄여주는 Plastic으로 주목 -> 이에 대한 연구가 활발히 진행

#### 생분해성 고분자란?

- ◆ 분해의 과정에서 생물의 대사가 관여되어 미생물 작용에 의한 저분자량 화합물로 변환되는 것을 특징으로 하는 고분자 플라스틱
- ◆ 이상적인 생분해성 고분자는 사용하는 동안은 우수한 성능을 지속적으로 발휘하고, 폐기 후 에는 자연계의 미생물에 의해 신속히 분해되어 자연으로 돌아갈 수 있는 플라스틱



### 생분해성 고분자

**환경문제에 관련 된 분야** (일반 분야를 지향)

분해과정은 대부분 미생물에 의함

의용재료에 관련 된 분야

(Fine Chemical 분야를 지향)

분해는 액체(신체)내의 효소에 의한 분해

Concept에는 커다란 차이가 있다 각 분야의 양태에도 커다란 차이가 존재

생분해성 고분자를 목적으로 하는 합성 고분자의 연구 개발 사례는 의용분야가 많다.

본고는 미생물에 의한 생분해성 고분자에 대해 검토함

## 생분해성 합성고분자

폴리비닐알코올(PVA)은 구조 단위별로 측쇄에 수산기를 포함하며 이 것이 생물 분해를 일으키기 쉽다. 분자량 8,000 ~30,000 1) 2) 3)

폴리에틸렌글리콜(PEG)는 분해하는 미생물의 종류에 의존하는 경향이 크며, 따라서 분해성도 제약을 받을 수 밖에 없다. 분자량 200~20,000

#### 폴리우레탄

지방족폴리에스테르(AP)와 PEG 양자의 구조를 가지고 있으며, AP의 Sofe segment 부분에 의해 분해가 진행. Tokiwa 등은 Lipase(*글리세 린과 에스테르 결합을 가수분해하는 효소*)가 기여한다고 보고<sup>6)</sup>

- 1) T.Suzuki et al., Agric. Biol. Chem., 37, 747 (1973)
- 2) K.Sakai et al., Agric. Biol. Chem50, 989 (1986)
- 3) 松村秀一ほか、高分子論文集、45、317 (1988)
- 4) K.Ogata et al., J. Ferment. Technol., 53, 757 (1975)
- 5) B.Schink, et al., Appl. Environ, Microbiol., 53, 852 (1986) 6) Y.Tokiwa et al., Agric, Biol, Chem., 52, 1937 (1988)

# 주요 생분해성 수지 (PL)

| 분류     | 고분자명                     | 약칭    | 특질1 | Concept         |
|--------|--------------------------|-------|-----|-----------------|
| 미생물생산계 | 폴리히드록시부틸레이트              | PHB   | Н   |                 |
|        | 폴리(히드록시부틸레이트/히드록시헥사노에이트) | PHBH  | H∼S |                 |
| 천연물계   | 아세틸셀룰로오스                 | СА    | Н   |                 |
|        | 키토산/셀룰로오스/전분             |       | Н   |                 |
|        | 전분/화학합성계 수지              |       | H∼S |                 |
| 화학합성계  | 폴리유산                     | PLA   | Н   |                 |
|        | 폴리카프로락톤                  | PCL   | S   |                 |
|        | 폴리(카프로락톤/부틸렌석시네이트)       | PCLBS |     |                 |
|        | 폴리부틸렌석시네이트               | РВS   |     |                 |
|        | 폴리(부틸렌석시네이트/아디페이트)       | PBSA  |     |                 |
|        | 폴리(에틸렌텔레프탈레이트/석시네이트)     | PETS  | Н   | PET 및 PBT       |
|        | 폴리(부틸렌아디페이트/텔레프탈레이트)     | PBAT  | S   | 를 생분해성<br>으로 변성 |
|        | 폴리(테트라메틸렌아디페이트/텔레프탈레이트)  | PTMAT |     |                 |
|        | 폴리에틸렌석시네이트               | PES   |     |                 |
|        | 폴리비닐알코올                  | PVA   | Н   |                 |
|        | 폴리글리콜산                   | PGA   | S   |                 |