물-에탄올 공비증류공정의 최적화

공주대학교 화학공학부 <u>조정호</u>

목	ት * (1)
1	공비 혼합물을 형성하는 이성분계의 분리
2	공비 혼합물의 분류
3	올바른 열역학 모델식의 선정
4	원료 조건, 제품 사양 및 유틸리티
5	삼성분계 액액 상평형도 상에서의 공비증류 공정의 설계
6	농축기(Concentrator)의 전산모사 기법
7	경사 분리기(Decanter)의 전산모사 기법
8	공비 증류탑(Azeotropic Column)의 전산모사 기법

도	ት * (2)
9	Stripper의 전산모사 기법
10	전제 공정에 대한 공정 최적화

공비 혼합물을 형성하는 이성분계의 분리

1. 공비 혼합물을 형성하는 이성분계의 분리

1.1 공비혼합물을 형성하는 이성분계의 종류 및 분리방법 개요:
1.2 공비점 분리제를 사용하는 공비증류공정
1.3 용매를 사용하는 추출증류공정
1.4 압력변환 증류공정
1.5 초임계 이산화탄소를 이용한 초임계 추출공정
1.6 진공증류공정
1.7 투과증발공정

1.1 공비 혼합물을 형성하는 이성분계의 종류 및 분리방법 개요

Some azeotropic distillation cases:

No.	Components to be separated	Entrainers
1	Ethanol/water; isopropanol/water; tert-butanol/water	Benzene, toluene, hexane, cyclohexane, methanol, normal pentane
2	Acetone/n-heptane	Toluene
3	Acetic acid/water	N-butyl acetate
4	Isopropanol/toluene	Acetone

• 위의 책(책은 내가 pdf 파일로 전달해 줄 것 임.)의 참고문헌을 찾아서 박회경 박사가 모두 논문을 작성할 수 있도록 준비할 것

1.1 공비 혼합물을 형성하는 이성분계의 종류 및 분리방법 개요

- Shift the Azeotropic Point by Changing Pressure
 - Pressure Swing Distillation
- Supercritical Fluid Extraction Using Supercritical CO₂ Solvent
- Pervaporation Method: Proposed by SKEC
- Vacuum Distillation
 - Azeotrope between ethanol and water disappears at 11.5kPa.
- Add the Third Component.
 - Azeotropic Distillation: Entrainer (Benzene, CHX, NC5)
 - Extractive Distillation: Solvent (Ethylene Glycol, DMSO)

1.2 공비점 분리제를 사용하는 공비증류공정

- Limit of Azeotropic Distillation
 - Distillation range is restricted by the azeotropic point.
 - Binary azeotropic mixtures, such as ethanol/water and IPA/water, can be separated into their pure components by distillation by the addition of a third component, so called the entrainer, which forms a ternary azeotrope with a lower boiling point than any binary azeotrope

1.2 공비점 분리제를 사용하는 공비증류공정: 원리 (1)

Azeotropic distillation

- By forming a ternary heterogeneous azeotrope lower than any other binary azeotropic temperatures, nearly pure ethanol can be obtained as a bottom product in an azeotropic distillation column.
- Ethanol is obtained as a bottom product from an azeotropic distillation column using an entrainer such as benzene or normal pentane.
- Extractive distillation
 - By adding a solvent which is exclusively familiar with a wanted component in a feed mixture, a desired component can be obtained in an extractive distillation column overhead.
 - Ethanol is obtained as a top product from an extractive distillation with ethylene glycol solvent.

1.2 공비점 분리제를 사용하는 공비증류공정: 비교

> 공비증류공정과 추출증류공정의 원리 비교

1.2 공비점 분리제를 사용하는 공비증류공정: 원리(2)

Aqueous ethanol can be separated into their pure components by distillation by the addition of a third component, so called the entrainer, which forms a ternary heterogeneous azeotrope with a lower than any other binary azeotropes.

1.3 용매를 사용하는 추출증류공정: 원리

주출증류공정에 적용 가능한 시스템들:

No.	Component 1	Component 2	Solvents
1	Alcohol (ethanol or isopropanol)	Water	Ethylene glycol, DMSO
2	Acetic acid	Water	Tributyl amine
3	Acetone	Water	Water, ethylene glycol
4	Methanol	Methanol	Water
5	Propylene	Propane	ACN(Acetonitrile)
6	C4 hydrocarbons	C4 hydrocarbons	ACN, Acetone, DMF, NMP
7	Tetrahydrofuran	Water	Ethylene glycol, DMSO
8	C5 hydrocarbons	C5 hydrocarbons	DMF
9	Aromatics	Non-aromatics	DMF, NMP, NFM
10	Methanol	DMC	2-Ethoxyethanol 4-Methyl-2-pentanone

 위의 책(책은 pdf 파일로 내가 전달 할 것임)의 참고문헌들을 박회경 박사가 모두 찾아서 논문으로 작성할 수 있도록 준비할 것

1.3 용매를 사용하는 추출증류공정: 원리

IPA Dehydration Using Solvent: Two-columns configuration

1.3 용매를 사용하는 추출증류공정: 원리

IPA Dehydration Using Solvent: Three-columns configuration

1.4 압력변환 증류공정: 원리

압력변화에 따라서 공비조성이 민감하게 변화하는 계에 적용할 수 있다.

THF / Water System

- Distillation range is restricted by the azeotropic point.
- Pressure-sensitive binary azeotropic mixture, such as THF and water system can be separated into their pure components by pressure swing distillation.
- ▶ 낮은 압력에서 Point A까지 농축함.
- ➢ 높은 압력으로 변경시키면, Point D까지 얻을 수 있음.

1.4 압력변환 증류공정: 공정의 구성

1.4 압력변환 증류공정: 예

> 압력변환 증류공정에 적용 가능한 예

No.	Component 1	Component 2	BIP's in P2	BIP's in A+
1	Carbon dioxide	Ethylene	0	Х
2	Hydrochloric acid	Water	0	Х
3	Water	Acetonitrile	\bigcirc	\bigcirc
4	Water	Ethanol	\bigcirc	\bigcirc
5	Water	Acrylic acid	\bigcirc	\bigcirc
6	Water	Acetone	\bigcirc	\bigcirc
7	Water	Propylene oxide	\bigcirc	\bigcirc
8	Water	Methyl acetate	\bigcirc	\bigcirc
9	Water	Propionic acid	\bigcirc	Х
10	Water	2-methoxyethanol	\bigcirc	\bigcirc
11	Water	2-butanone (MEK)	\bigcirc	\bigcirc
12	Water	Tetrahydrofuran (THF)	\bigcirc	\bigcirc
13	Carbon tetrachloride	Ethanol	\bigcirc	\bigcirc
14	Carbon tetrachloride	Ethyl acetate	\bigcirc	\bigcirc
15	Carbon tetrachloride	Ethyl acetate	\bigcirc	\bigcirc
16	Carbon tetrachloride	Benzene	\bigcirc	\bigcirc
17	Methanol	Acetone	\bigcirc	\bigcirc
18	Methanol	2-butanone (MEK)	\bigcirc	0
19	Methanol	Methyl propyl ketone	0	0

1.4 압력변환 증류공정: 예

> 압력변환 증류공정에 적용 가능한 예

No.	Component 1	Component 2	BIP's in P2	BIP's in A+
20	Methanol	Methyl acetate	0	\bigcirc
21	Methanol	Ethyl acetate	0	\bigcirc
22	Methanol	Benzene	0	\bigcirc
23	Methanol	Dichloromethane	\bigcirc	\bigcirc
24	Methylamine	Trimethylamine	\bigcirc	\bigcirc
25	Ethanol	Dioxane	\bigcirc	\bigcirc
26	Ethanol	Benzene	\bigcirc	\bigcirc
27	Ethanol	Heptane	\bigcirc	\bigcirc
28	Dimethylamine	Trimethylamine	\bigcirc	Х
29	2-propanol	Benzene	\bigcirc	\bigcirc
30	Propanol	Benzene	\bigcirc	\bigcirc
31	Propanol	Cyclohexane	\bigcirc	Х
32	2-butanone (MEK)	Benzene	\bigcirc	\bigcirc
33	2-butanone (MEK)	Cyclohexane	\bigcirc	\bigcirc
34	Isobutyl alcohol	Benzene	0	\bigcirc
35	Benzene	Cyclohexane	0	\bigcirc
36	Benzene	Hexane	\bigcirc	\bigcirc
37	Phenol	Butyl acetate	0	\bigcirc
38	Aniline	Octane	Х	X

1.5 초임계 이산화탄소를 이용한 초임계 추출공정

1.6 진공증류공정:

Azeotrope between ethanol and water disappears below the pressure, 0.1 bar.

S3

공비 혼합물의 분류

2. 공비 혼합물의 분류

2.1 공비 혼합물의 정의

2.2 Homogeneous azeotrope² heterogeneous azeotrope

2.3 이성분계 공비와 삼성분계 공비 혼합물

2.4 실험적인 공비온도 및 조성과 계산 결과 사이의 비교

2.1 공비 혼합물의 정의

- > Azeotrope:
 - Boiling at the same temperature and composition both at the vapor and the liquid phases
- ▶ 공비(共沸)
 - 일정한 온도에서 용액의 성분비와 증기의 성분비가 같아지는 현상을 나타내는 것을 말하며, 이러한 상태의 조성을 공비조성이라고 한다.

2.2 균일 공비와 불균일 공비 및 이성분계 공비와 삼성분계 공비

- Homogeneous azeotrope:
 - 액상이 서로 다른 액상으로 상 분리가 일어나지 않는다.
 - **°I**: IPA-Water, Benzene-IPA
- Heterogeneous azeotropes:
 - 액상의 서로 다른 두 개의 액상으로 상 분리가 일어난다.
 - 종류: Binary and ternary heterogeneous azeotropes
 - **°I**: Water-Benzene, IPA-Water-Benzene

2.3 실험적인 공비온도 및 조성과 계산 결과 사이의 비교: (1)

Binary homogeneous azeotrope: "exp vs. P2"

Component	BP(°C)	Azeotropic Temperature (°C)	Azeo. Weight %
IPA	82.3	80.4	87.8
Water	100.0		12.2
Benzene	80.1	71.5	66.7
Ethanol	82.3		33.3

Binary heterogeneous azeotrope: "exp vs. P2"

Component	BP(°C)	Azeotropic Temperature (°C)	Azeo. Weight %	Upper Layer	Lower Layer
IPA	80.1	71.5 ()	66.7	99.94	0.07
Water	100.0		33.3	0.06	99.93

Ternary heterogeneous azeotrope: "exp vs. P2"

Component	BP(°C)	Azeotropic Temperature (°C)	Azeo. Weight %	Upper Layer	Lower Layer
Benzene	80.1	65.7 ()	72.0	77.5	0.5
IPA	82.3		19.8	20.2	14.4
Water	100.0		8.2	2.3	85.1

2.3 실험적인 공비온도 및 조성과 계산 결과 사이의 비교: (2)

Binary homogeneous azeotrope: "exp vs. Aspen Plus"

Component	BP(°C)	Azeotropic Temperature (°C)	Azeo. Weight %
IPA	82.3	80.4	87.8
Water	100.0		12.2
Benzene	80.1	71.5	66.7
IPA	82.3		33.3

Binary heterogeneous azeotrope: "exp vs. Aspen Plus"

Component	BP(°C)	Azeotropic Temperature (°C)	Azeo. Weight %	Upper Layer	Lower Layer
Benzene	80.1	71.5 ()	66.7	99.94	0.07
Water	100.0		33.3	0.06	99.93

Ternary heterogeneous azeotrope: "exp vs. Aspen Plus"

Component	BP(°C)	Azeotropic Temperature (°C)	Azeo. Weight %	Upper Layer	Lower Layer
Benzene	80.1	65.7 ()	72.0	77.5	0.5
IPA	82.3		19.8	20.2	14.4
Water	100.0		8.2	2.3	85.1

올바른 열역학 모델식의 선정

3. 올바른 열역학 모델식의 선정

3.1 기액 상평형과 액액 상평형 원리
3.2 활동도계수와 퓨개시티계수의 정의
3.3 One constant Margules 모델식
3.4 van Laar 모델식
3.5 Wilson 모델식과 Local composition concept
3.6 NRTL 모델식
3.7 UNIQUAC 모델식
3.8 UNIFAC 모델식

Four criteria for equilibria:

Situation	Condition
$T^{\alpha} = T^{\beta}$	Thermal Equilibrium
$P^{\alpha} = P^{\beta}$	Mechanical Equilibrium
$\mu_i^v = \mu_i^l$, $\mu_i^{l1} = \mu_i^{l2}$	Phase Equilibria (VLE, LLE)
$\left(\frac{\partial G}{\partial \xi}\right)_{T,P} = 0$	Chemical Equilibrium

Fugacity (or chemical potential) is defined as an escaping tendency of a component '*i*' in a certain phase into another phase.

Vapor-liquid equilibrium calculations

The basic relationship for every component in vapor-liquid equilibrium is:

$$\hat{f}_i^v(T, P, y_i) = \hat{f}_i^l(T, P, x_i)$$
(1)

where

 \hat{f}_i^v : the fugacity of component *i* in the vapor phase \hat{f}_i^l : the fugacity of component *i* in the liquid phase

- There are two methods for representing liquid fugacities.
 - Equation of state method
 - Liquid activity coefficient method

The equation of state method defines fugacities as:

$$\hat{f}_{i}^{\nu} = \hat{\phi}_{i}^{\nu} y_{i} P$$

$$\hat{f}_{i}^{l} = \hat{\phi}_{i}^{l} x_{i} P$$
(2)
(3)

where:

 $\begin{aligned} & \phi_i^{\ v} & \text{is the vapor phase fugacity coefficient} \\ & \phi_i^{\ l} & \text{is the liquid phase fugacity coefficient} \\ & y_i & \text{is the mole fraction of } i \text{ in the vapor} \\ & x_i & \text{is the mole fraction of } i \text{ in the liquid} \\ & P & \text{is the system pressure} \end{aligned}$

We can then rewrite equation 1 as:

$$\hat{\phi}_i^v y_i = \hat{\phi}_i^l x_i \tag{4}$$

- This is the standard equation used to represent vaporliquid equilibrium using the equation-of-state method.
- $\blacktriangleright \phi_i^{v}$ and ϕ_i^{l} are both calculated by the equation-of-state.
- Note that K-values are defined as:

$$K_i = \frac{y_i}{x_i} \tag{5}$$

3.1 기액 상평형과 액액 상평형 원리: 활동도계수(VLE)

The activity coefficient method defines liquid fugacities as:

$$\hat{f}_i^l = \gamma_i x_i f_i^0 \tag{6}$$

The vapor fugacity is the same as the EOS approach:

$$\hat{f}_i^v = \hat{\phi}_i^v y_i P \tag{7}$$

where:

 γ_i is the liquid activity coefficient of component *i*

 f_i^0 is the standard liquid fugacity of component *i* $\hat{\phi}_i^v$ is calculated from an equation-of-state model

We can then rewrite equation 1 as:

$$\hat{\phi}_i^{\nu} y_i P = x_i \gamma_i f_i^{\ 0} \tag{8}$$

3.1 기액 상평형과 액액 상평형 원리: 활동도계수(LLE)

• For Liquid-Liquid Equilibrium (LLE) the relationship is:

$$\hat{f}_{i}^{l1} = \hat{f}_{i}^{l2}$$
(9)

where the designators 1 and 2 represent the two separate liquid phases.

• Using the activity coefficient definition of fugacity, this can be rewritten and simplified as:

$$x_i^{l_1} \gamma_i^{l_1} = x_i^{l_2} \gamma_i^{l_2}$$
 (10)

3.2 One constant Margules 모델식

The simplest polynomial representation is:

$$G^{ex} = Ax_1 x_2$$

$$\blacktriangleright \text{ Thus, } \ln \gamma_1 = \frac{\partial (nG^{ex})}{\partial n_1} \Big|_{T,P,n_2} = \frac{\partial}{\partial n_1} \left(\frac{An_1 n_2}{n_1 + n_2} \right) = A \left\{ \frac{n_2}{n_1 + n_2} - \frac{n_1 n_2}{(n_1 + n_2)^2} \right\} = Ax_2^2$$

$$\blacktriangleright \text{ So that } \gamma_1 = \exp\left(\frac{Ax_2^2}{RT}\right) \text{ and } \gamma_2 = \exp\left(\frac{Ax_1^2}{RT}\right)$$

The two species activity coefficients are mirror images of each other as a function of composition.
3.2 One constant Margules: Non-ideal Mixtures

- > A mixture is non-ideal if γ_i are not equal to 1.
- > The value of γ_i indicates the degree of nonideality:
 - If γ_i is less than 1, component interactions are attractive.
 - If γ_i is greater than 1, component interactions are repulsive. If much greater than 1, the formation of 2 liquid phases is possible.
 - For most activity coefficient property methods, non-ideal interactions of components i and j will affect component k.

3.2 One constant Margules: For a Binary VLE

3.2 One constant Margules: For Much Larger Value of γ_i

3.2 One constant Margules: Types of Liquid Mixtures (1)

- Completely Miscible System
 - Always forms single liquid phase iregardless of mixture composition and temperature Ideal Gas Law (for vapor phase).
 - Double derivative of Gibbs free energy change due to mixing is always positive. (stable)
- Immiscible System
 - Mutual solubility is nearly zero.
 - Gibbs free energy change due to mixing is always positive. (unstable)
- Partially Miscible System
 - Liquid mixture forms a stable single liquid phase for some concentration range but splits into the two liquid phases when some more A (or B) is added.

3.2 One constant Margules: Types of Liquid Mixtures (2)

Completely Miscible System (Stable)

$$\left[\frac{\partial^2 \left(\Delta G^{mix} / RT\right)}{\partial x^2}\right]_{T,P} > 0$$

Immiscible System (Unstable)

$$\left[\frac{\partial^2 \left(\Delta G^{mix} / RT\right)}{\partial x^2}\right]_{T,P} < 0$$

> Partially Miscible System (Conditionally Stable) $\left[\frac{\partial^2 \left(\Delta G^{mix} / RT\right)}{\partial x^2}\right]_{T,P} = 0$

3.2 One constant Margules 모델식

3.2 One constant Margules 모델식

References

1. Margules, 1895, Sitzber., Akad. Wiss. Wien, *Math. Naturw*., (2A). 104, 1234.

van Laar was one of the students of van der Waals.

Another old correlation which is still frequently used is the van Laar equation. The resulting expression for the activity coefficient is:

$$\ln \gamma_{i} = \sum_{i=1}^{N} a_{il} Z_{l} - \sum_{j=1}^{N} a_{ij} Z_{i} Z_{j} - \frac{1}{2} \sum_{\substack{j=1\\j,k\neq 1}}^{N} a_{j,k} \frac{a_{ij}}{a_{ji}} Z_{j} Z_{k}$$

> Two parameters, a_{ij} and a_{ji} , are required for each binary.

> The van Laar equations for the activity coefficients:

With relation to the van der Waals parameter a and b

$$\alpha = \frac{b_1}{RT} \left[\frac{\sqrt{a_1}}{b_1} - \frac{\sqrt{a_2}}{b_2} \right]^2 \quad \text{and} \quad \beta = \frac{b_2}{RT} \left[\frac{\sqrt{a_1}}{b_1} - \frac{\sqrt{a_2}}{b_2} \right]^2$$

Since we know the van der Waals equation is not very accurate, it is not surprising that the correlative value of the van Laar equations is different from the regressed values.

Comparison of the van Laar constants between parameters obtained from regressed data and parameters calculated from van der Waals equation

	Obtaine regre	ed from ssion	Obtained from vdw EOS						
System	α	β	α	β					
acetaldehyde-water	1.59	1.80	8.05	2.08					
Acetone-methanol	0.58	0.56	0.56	0.33					
Acetone-water	2.05	1.50	7.86	2.13					

Table: Application guideline of van Laar equation								
Required Pure-component Properties	Application G	uidelines						
Vapor Pressure	Components	Use for chemically not dissimilar components						

References

1. van Laar, J. J., 1910, The vapor pressure of binary mixtures, *Z. Phys. Chem.*, **72**, 723-751

- Basis
 - Derived from the Flory-Huggins model, by assuming that the local composition is not equal to the overall composition to account for non-randomness of mixture composition.
 - The activity coefficient model to use "local composition concept".
 - Cannot predict two liquid phases regardless of binary parameter values
 - Will never predict two liquid phases.
 - Not recommended it process has two liquid phases such as decanters.

- The Wilson equation was the first to incorporate the concept of "local Composition." The basic idea is that, because of differences in intermolecular forces, the composition in the neighborhood of a specific molecule in solution will differ from that of the bulk liquid.
- The two parameters per binary are, at least in principle, associated with the degree to which each molecule can produce a change in the composition of the local environment.

> The expression for the activity coefficient is:

$$\ln \gamma_{i} = 1 - \ln \sum_{j=1}^{N} x_{j} A_{ij} - \sum_{k=1}^{N} \frac{x_{k} A_{ki}}{\sum_{j=1}^{N} x_{j} A_{kj}}$$

where: $A_{ij} = \frac{v_{i}^{L}}{v_{j}^{L}} \exp \left[-\frac{a_{ij}}{T}\right]$ (when unit of a_{ij} is K)

 v_i^L = the liquid molar volume of component i

The Wilson equation cannot describe local maxima or minima in the activity coefficient. Its single significant shortcoming, however, is that it is mathematically unable to predict the splitting of a liquid into two partially miscible phases. It is therefore completely unsuitable for problems involving liquid-liquid equilibria.

References

1. Wilson, G. M., 1964, Vapor-Liquid Equilibrium XI. A New Expression for the Excess Free Energy of Mixing, *J. Amer. Chem. Soc.*, **86**, 127.

Fatal weakness of Wilson model:

Fatal weakness of Wilson model:

It does not return to ideal Raoult's law when the BIP's are not available in DB.

How about Aspen Plus?

Fatal weakness of Wilson model:

Fatal weakness of Wilson model:

3.4 Wilson 모델식: Stability Criteria for Liquid Mixtures

- If the second derivative of total Gibbs free energy change vs. composition is bigger than zero for any composition, the system satisfies the stability criteria so, liquid mixture forms a single stable liquid mixture.
- > (a) Ideal
- > (b) Slightly Non-ideal
- > (c) Critical Miscibility
- (d) Liquid Phase Splitting

Table: Application guideline of Wilson equation										
Required Pure-component Application Guidelines Properties										
Vapor Pressure Liquid molar volume	Components	Useful for polar or associating component in nonpolar solvents. Cannot be used if liquid-liquid immiscibility exists.								

- The NRTL (non-random-two-liquid) equation was developed by Renon and Prausnitz to make use of the local composition concept, while avoiding the Wilson equation's inability to predict liquid-liquid phase separation. The resulting equation has been quite successful in correlating a wide variety of systems.
- References
 - 1. Renon, H. and Prausnitz, J. M., 1968, Local Composition in Thermodynamic Excess Functions for Liquid Mixtures, *AIChE J.*, **14**, 135-144.

NRTL. This model has up to 8 adjustable binary parameters that can be fitted to data.

► Three parameters, τ_{ij} , τ_{ji} , and $\alpha_{ij} = \alpha_{ji}$, are e NRTL (nonrandom-two-liquid) equation was developed by Renon and Prausnitz to make use of the local composition concept, while avoiding the Wilson equation's inability to predict liquid-liquid phase separation. The resulting equation has been quite successful in correlating a wide variety of systems.

Table: Application guideline of NRTL equation										
Required Pure-component Properties	Application Gui	delines								
Vapor Pressure	Components	Use for strongly nonideal mixtures and for partially miscible systems								

- $\succ \alpha_{ij} = 0.3$
 - For mixtures of non-polar substances; mixtures for which deviation from ideality is small; for VLE
- $\succ \alpha_{ij} = 0.2$
 - For systems that exhibit liquid-liquid immiscibility
- $\succ \alpha_{ij} = 0.47$
 - For mixtures of strongly self-associated substances with Non-polar substances, but not recommended since alternative equations are available, Hayden-O'Connell model for dimers and hexamer model for hexamers.

3.6 UNIQUAC 모델식

- Basis
 - Derived from Derived from on ideas of Guggenheim quasichemical theory to introduce local area fraction in a similar way to local fraction in Wilson model and local mole fraction in Renon model.
 - Takes into account differences in molecular size and shape by introducing area parameter *"q"* and volume parameter *"r"*.
 - It is superior to Wilson model since it can predict liquid phase splitting phase behavior.
 - Can be used to multi-component phase equilibria with pure and binary parameters only.
 - It is superior to NRTL since it has only two adjustable parameters. (NRTL has 3 parameter for each binary pair.)

3.6 UNIQUAC 모델식

- The excess Gibbs energy (and therefore the logarithm of the activity coefficient) is divided into a combinatorial and a residual part. The combinatorial part depends on the sizes and shapes of the individual molecules; it contains no binary parameters. The residual part, which accounts for the energetic interactions, has two adjustable parameters.
- The UNIQUAC equation has, like the NRTL equation, been quite successful in correlating a wide variety of systems involving highly nonideal systems or partially miscible systems.

> The expression for the activity coefficient is:

$$\ln \gamma_{i} = \ln \gamma_{i}^{C} + \ln \gamma_{i}^{R}$$

$$\ln \gamma_{i}^{C} = \ln \left(\frac{\varphi_{i}}{x_{i}}\right) + \frac{\overline{z}}{2} q_{i} \ln \left(\frac{\theta_{i}}{\varphi_{i}}\right) + l_{i} - \frac{\varphi_{i}}{x_{i}} \sum_{j=1}^{N} x_{j} l_{j}$$

$$\ln \gamma_{i}^{R} = q_{i} \left(1 - \ln \left(\sum_{j=1}^{M} \theta_{j} \tau_{ji}\right) - \sum_{j=1}^{M} \frac{\theta_{j} \tau_{ij}}{\sum_{k=1}^{M} \theta_{k} \tau_{kj}}\right)$$

3.6 UNIQUAC 모델식

References

1. Abrams, D. S. and Prausnitz, J. M., 1975, Statistical Thermodynamics of Mixtures: A New Expression for the Excess Gibbs Free Energy of Partly or Completely Miscible Systems, *AIChE J.*, **21**, 116-128

3.7 UNIFAC 모델식

- The UNIFAC (UNIQUAC functional activity coefficient) method was developed in 1975 by Fredenslud, Jones, and Prausnitz.
- This method estimates activity coefficients based on the group contribution concept following the ASOG model.
- Interactions between two molecules are assumed to be a function of group-group interactions.
- Whereas there are thousands of chemical compounds of interest in chemical processing, the number of functional groups is much smaller.

3.7 UNIFAC 모델식

♦ PRO/II 5 ファイ IL(F)	6 On - line H 編集(F)	lelp Jan(M) オ⊐≲	(1) (1) (1) (1) (1) (1)																								- 8 ×
トピック(T)	milexe (ビ/ (EDE((P)		>>6)																							
		ad only 3 (T)	07792/02/ (102/																						_		
UNIFAU	·																										
86	23	CCI3	BI BIZ V	V2			VI BIZ	BI	VV	812 Z																	-
87	25	ACCI	B2 V2 B2 V	120	V2 V	2 V2	V2 V2	2 B2	V2 V	V2 V2	V																
88	37	CICC	B2 B2	V2	V2	10 010 14	V2	2 V2	V2 V2	V2 V2	V2																
90	1	CH2	B12 B2 B12 V	V B12 V	V B2 B12 V	12 B12 V	V12 B12	2 B12	V2 V2	812 812	2812	B2 B2															
101	42D	CY-CH2		Z			2	2 2	Z Z	Z Z	0.040	Z	2														
110	2	C=C	BIZ VZ BIZ V	BIZ V	B2 VI2V	12 V2	VIZBIZ	2 812	VZ VZ	BIZBI	2812	VZ V E	512 Z	10													
114	34	C=-C	V2	2	V2		2	0 040		240144	0.010	V	V2	V2	_												
120	3	ACH	B12 B2 B12 V	BI2 V	V BZ VIZV	12B12 V		2 812	VZ VZ	B12 V1.	2812	BZ VZE	312 Z	BIZ		1											
122	4	ACCH2	B2 B2 B2 V	B2 V		2 B2 V	V2 B2	2 B2	V2 V2	B2 V2	B2	B2 V2	32 2	B2	B2	50											
130	y	CH2CO	B12 B2 B12 V	B12 V		2 B12 V	V2 B12	2 B12	VZ VZ	B12 B12	2812	B2 B2 E	312 Z	B12 V	2 B12	B2	40										
140	19	CH2CN	BI2 V			2 V12	V2	2 B12	VZ VZ	VZ VZ	BI	BZ VZE	512 Z	BIZ V		B2 B	12	1									
141	26	CNO2	L B2		V2		B2	2 \(\nu\)2	V	V2 V2		B2 V2	32 2	B2 V	2 82	B2 E	32 \ \ \ 2										
143	27	ACN02	L B2			B2				V2		B2	32 2		B2	B2 E	52	V2									
144	18	Pyridine	VZ BZ B12			1 152	V2	2	V2	V12	2181	L V2 E	012 Z	V2	812	B2 V	12 812		V								
145	18D	Pyriaine		2	V2 V2	2	2	2 2	2	2 2			2 2 V2 2		- Z		z 2 /2 \/2										
150	29	CH3SH			VZ VZ		V2		٧Z	V			VZ Z		- V2		/2 V2	+	_								
151	48L	Sumes									V .	· · ·	V	V					-								
153	50L	Iniopene											2 2	2	2	V		2	V								
154	47	AUS		1/10	V9 V19 V	19 V19 V	V10 V10	a V19	V2 V2	D10 V11	1/10	V2 V2 V	2 2	2		2 V2 V	2 10\/15	2	1/1	2	V2 V	<u> </u>					
101	0 7	UH3UH	R12 R2 R12 V	V D12		12 V12 V	V12 V12	2 V12	VZ VZ				212 2	V12	D12		12 012			2 2	VZ V	V 2	V4.9				
102	4.4	HZU		V D12 V	B2 V12 V		V12 D12	2 012	2	012 D12	2 01	D2 L D	n 2 2		012	02 0	12012	: D2		2 2			VIZ	2			
165	44	ALCOOH	2		2		2	2 2	2	2 2		2 2	2 2	2	2	2				2		_	1	2	-		
167	45				V12V	12 0 1 2	Z Z	2 2	Z V2	Z Z	0019	Z Z	2 2	Z D19	- Z	200	4 4 19 D 19	000	2 09 V	2	V	v 9	- Z	Z D12			
168	24	004			0120	12 812		2 012	VZ VZ	N2 012		BZ VZ E	V2 2	N2	B12	B2 B	12/01/2	BZ	62 1	2		v 2	V12	BIZ V	2 V	2	
170	20	CS2 Eurfurel		1.2			V2 V2	2 92	V	2 1 2	V	1.2	22 2	V2 V2	P2	D2 0	2 12	V2	-				2	V CD		2	
202	20	April	D D2				V2	1/2		2 L2	v	 	32 Z	V2 \/2	- D2		1/2	+					2	1/2		2	
205	20	DMCO	V2		V2			¥2 \\2		1/2	V	¥2	v∠ ⊇0	V2 D2		V2 \	10 12	+		_	1/2		V2	V2 V2	2 1/	2	_
247	50	NMD	V V2		¥2		- V	¥2	- V	42	V	V V	52 M	102 17	102	V2 V		+			VZ V		٧Z	VZ V	2 4	4	_
250	44L 46D		× ×								v	v v	2 2	2	2	2	-	+			v	- 2		2	+		
251	400	Morpholip	2 X										2 2 V	2	- 2 - 1/	2						2	V	2			
202	491	Silanas	X X			/	X						V	v	V	V V	V						v	V V	╋╋╋		
200	42L 421	Silovopos	V V			/	Ÿ						V		V	V V	*	+ +	-					v			_
270	4-JL 4-0	CED				*							vo 2	V	- V	v	-	+							+		_
201	20		1/2			2	V2 V2	2					v2 2	1/2	1/2	1/2		+	11	2			1/2		NP	,	
207	451		V2			~	72 72	~					V	14	V V	¥4				. 4			V2		×.	-	
300	4JL 22	Br	V2 V2					2 12		V2 V2	1/2	V2	· v2 2	V2	V2	1/2	12 12	V2	V2 V	2			V2	2	V		
320	20	L L	V2 V2	- V2			V2	V2	V V	· 2 12 \/2	V		v2	12	V2	V2 \	/2	V2	v2				V2	-	2 1	2 12	
330		SiCl					¥2	74	×		+		V	\vdash	+**	<u> </u>	-						74			- * -	
340		SICP									+		V	\vdash	+	\vdash	+	+								+	
350		SICI3											V		-											+	
360		SiCl4											V														
385	31	DOH	1 B2 B2			B2	V	B2					32		B2	B2 F	32 1/2		L				V2	B2			
388	471	OCCOH						V	- V			V	V	V	V		V	+	-					V	V		
Simsci I	⊿ain Gro	 un #			<u> </u>	1 1 1 1	<u> </u>	<u> </u>	<u>6</u> 6	2 4	- 6	<u> </u>	<u> </u>	É.	± 0		20		o 4	5		2 4	2	2 5		20	
Cimbori		ωp π	0 0 0	(1 m 4	4444	o o o	w w	9 ~	~ ~	ωœ	00	ω 00	9 10		- 2	23	<u>5</u> 4	14	7 7	14	φ. τς i	5 6	16	16	16	1	17
	* Throu	ah Groupe	41 the Dortmund a	and Lunch	Pocoarch are		no camo	aroup p	umbore	aftor t	hat th	nou are d	ivoraer	t In a	additio	n the		diffor	ont ar		for 18 env	Inani	thonic	. oarb	one		
	niiou	gn Groups		апа сунуру	rivesedi ci i gro	Jups use lí	ie same	group fi	unibers,	anei l	nat tí	iey are d	iverger	n. 1113	additi0	n niej	, nag (amere	an yr	ups I	IOF TO BILL	лар		, carbo	4 IS.		-1
4			1																								
🚮 スタート	🖉 🖉 ।	🏷 🎘 🔰 💋	1 🐵	🛛 🔄 T:¥User	Forum¥PROII v6	🔁 C:¥Simsci¥	Proii56¥Use	r¥ 🗟 I)	和ール ハ°ネル	,	<u>4</u>	PRO/II wit	n PROVIS	ION	🔗 PRO /	́Ш 5.6 ()n-line									2 <mark>8</mark> _/	16:30

3.7 UNIFAC 모델식

The UNIFAC method is based on the UNIQIAC model, which represents the excess Gibbs energy (and logarithm of activity coefficient) as a combination of two effects.

 $\ln \gamma_i = \ln \gamma_i^C + \ln \gamma_i^R$

- The combinatorial term is computed from the UNIQUAC equation using the van der Waals are and volume parameter calculated from the individual structural groups.
- A large number of interaction parameters between structural groups for the calculation of residual term, as well as group size and shape parameters habe been incorporated into Aspen Plus.

3.7 UNIFAC 모델식

References

1. Fredenslund, Aa., Jones, R. L., and Prausnitz, J. M., 1975, Group Contribution Estimation of Activity Coefficients in Nonideal Liquid Mixtures, *AIChE J.*, **18**, 714-722.

원료 조건, 제품 사양 및 유틸리티 조건

4. 원료 조건, 제품 사양 및 유틸리티

4.1 원료 조건

- 4.2 제품 사양
- 4.3 사용하는 유틸리티 종류 및 공급 및 회수온도

4.1 원료 조건

Feedstock Conditions:

Component	Mole%
Ethanol	10.0
Water	90.0
Flow (kmol/h)	100.0
Temperature (°C)	45.0
Pressure (bar)	3.5

4.2 제품 사양

- Product Specifications:
 - Ethanol purity: Not less than 99.9% by mole
 - Ethanol recovery: Not less than 99.9%
 - Ethanol content in waste water: Not more than 500 ppm by mole
- Entrainer Selection:
 - Benzene

4.3 사용하는 유틸리티 종류 및 공급 및 회수온도

- Utility Conditions:
 - Steam: 180°C saturated steam
 - Cooling water
 - 32°C supply and 40°C return

5

삼성분계 상평형도 상에서의 공비증류 공정의 설계

5. 삼성분계 상평형도 상에서의 공비증류 공정의 설계

5.1 액-액 상분리선(Binodal curve)의 도시
5.2 이성분계 및 삼성분계 공비점의 추산 및 공비온도 계산
5.3 Residual curve의 도시 및 영역 I, II 및 III의 특징
5.4 영역 I, II 및 III에서의 공비증류탑의 전산모사

Binodal Curve and Plait Point:

Homogeneous & Heterogeneous Azeotropes:

Residual Curve for IPA and Water:

Trial	Water	IPA	Benzene
1	0.3216	0.6685	0.0099
5	0.3168	0.6526	0.0306
10	0.3037	0.6074	0.0889
15	0.2878	0.5429	0.1693
20	0.2764	0.4764	0.2472
25	0.2719	0.4156	0.3125
30	0.2739	0.3618	0.3643
35	0.2676	0.3343	0.3981
40	0.2606	0.3169	0.4225
45	0.2551	0.3031	0.4418
50	0.2509	0.2921	0.4569
55	0.2477	0.2833	0.4690
60	0.2453	0.2761	0.4786
65	0.2434	0.2704	0.4862
70	0.2420	0.2657	0.4924
75	0.2409	0.2618	0.4973
80	0.2401	0.2587	0.5012
85	0.2395	0.2561	0.5044
90	0.2390	0.2541	0.5069
95	0.2387	0.2523	0.5090
100	0.2380	0.2440	0.5180

Residual Curve for IPA and Water:

Residual Curve for IPA and Benzene:

Trial	Water	IPA	Benzene
1	0.0099	0.4160	0.5741
5	0.0189	0.4098	0.5713
10	0.0389	0.3961	0.5650
15	0.0707	0.3741	0.5552
20	0.1072	0.3483	0.5445
25	0.1364	0.3273	0.5363
30	0.1591	0.3108	0.5302
35	0.1767	0.2976	0.5257
40	0.1903	0.2872	0.5225
45	0.2009	0.2789	0.5202
50	0.2091	0.2723	0.5187
55	0.2154	0.2669	0.5176
60	0.2204	0.2627	0.5170
65	0.2242	0.2592	0.5166
70	0.2272	0.2564	0.5163
75	0.2296	0.2542	0.5163
80	0.2314	0.2524	0.5163
85	0.2328	0.2509	0.5163
90	0.2339	0.2497	0.5164
95	0.2347	0.2487	0.5165
100	0.2380	0.2440	0.5180

Residual Curve for IPA and Benzene:

Residual Curve for Water and Benzene:

Trial	Water	IPA	Benzene
1	0.2987	0.0010	0.7003
5	0.2986	0.0015	0.7000
10	0.2983	0.0024	0.6993
15	0.2979	0.0038	0.6983
20	0.2973	0.0061	0.6966
25	0.2962	0.0096	0.6941
30	0.2947	0.0149	0.6904
35	0.2926	0.0224	0.6850
40	0.2897	0.0327	0.6776
45	0.2860	0.0457	0.6682
50	0.2818	0.0613	0.6569
55	0.2771	0.0787	0.6443
60	0.2722	0.0969	0.6309
65	0.2675	0.1150	0.6175
70	0.2631	0.1322	0.6046
75	0.2591	0.1482	0.5927
80	0.2556	0.1626	0.5818
85	0.2526	0.1753	0.5721
90	0.2500	0.1863	0.5636
95	0.2479	0.1958	0.5563
100	0.2380	0.2440	0.5180

Residual Curve for Water and Benzene:

Composition at Region II can produce pure IPA.

Feedstock in Region *I*.

ĺ		S2 →			
	- <u>6</u> -7 8	Component	S1	S2	S3
	9 10	Water	10.0000	16.2421	1.7277E-13
S1 -12 -13 -14 -15 -16	IPA	20.0000	32.4217	0.10000	
	Benzene	70.0000	51.3362	99.9000	
	17 18	Flow (kmol/h)	100.0000	61.5685	38.4315

-

S3

Feedstock in Region *II*.

T1

S3

-

 \Rightarrow

	S2 ==>			
<mark></mark>	Component	S1	S2	S3
	Water	10.0000	16.8317	0.1000
1	IPA	20.0000	32.4661	99.9000
<u>14</u>	Benzene	70.0000	50.7021	2.1407E-6
17 18	Flow (kmol/h)	100.0000	59.1691	40.8309
19 20 21			·	

Feedstock in Region *III*.

T1

S3

----->

ĺ		S2 ==>			
	6 7 8	Component	S1	S2	S3
	9	Water	10.0000	23.5506	99.9000
■> <u>S1</u> >	11 12 13	IPA	20.0000	30.5480	0.1000
	14 15 16	Benzene	70.0000	45.9014	1.1071E-8
	17	Flow (kmol/h)	100.0000	65.3547	34.6426
	20 21 22 23				

농축기(Concentrator)의 전산모사 기법

Concentrator Simulation:

Basis: Feed = 100 Kg-mole/hr $x_F = 0.10$ Ethanol Mole Balance $F x_F = D x_D$ (Nearly Pure Water at Column Bottom)

$$D = \frac{F \cdot X_F}{X_D} = \frac{F \cdot X_F}{X_{azeo}} = \frac{(100) \cdot (0.6)}{(0.88)} = 68.18$$

PRO/II Flow Sheet for a Concentrator:

Column Summary for a Concentrator:

COLUMN SUMMARY

				NET FLO	W RATES		HEATER
TRAY	TEMP	PRESSURE	LIQUID	VAPOR	FEED	PRODUCT	DUTIES
	DEG C	BAR		KG/	HR		M*KCAL/HR
	45 0	1 05					0 0729
2	40.0	1 20	2024 4	/112 E		005.01	-0.9728
∠ 2	04.0	1 21	2020 0	4113.5			
3	04.0	1.21	3930.0	4620.0			
4	84.9	1.22	3925.0	4616.4			
5	85.1	1.23	3915.8	4610.6			
6	85.3	1.23	3901.3	4601.4			
7	85.5	1.24	3878.3	4586.8			
8	85.7	1.25	3841.3	4563.9			
9	85.9	1.26	3779.3	4526.8			
10	86.1	1.27	3667.8	4464.9			
11	86.4	1.28	3432.1	4353.4			
12	87.4	1.29	6046.5	4117.7	2222.3L		
13	87.5	1.30	6049.3	4509.7			
14	87.7	1.30	6052.2	4512.6			
15	87.9	1.31	6055.0	4515.4			
16	88.1	1.32	6057.8	4518.2			
17	88.2	1.33	6060.6	4521.0			
18	88.4	1.34	6063.3	4523.8			
19	88.6	1.35	6065.8	4526.6			
20	88.7	1.36	6064.4	4529.0			
21	88.9	1.37	6014.4	4527.7			
22	89.4	1.37	5341.0	4477.6			
23	95.1	1.38	3887.2	3804.2			
24	106.4	1.39	3567.0	2350.4			
25R	109.1	1.40		2030.2		1536.8L	<u>1.0714</u>
				00			
				33			

Distillation Algorithm Selection: (1)

Inside Out (I/O)

- Relatively Ideal Thermodynamics including Hydrocarbon with Water Decant
- Incorporates sidestrippers into column: No recycle!
- Thermosiphon Reboilers
- Flash Zone Model
- Very forgiving of bad initial estimates
- Fast!
- No VLLE

Distillation Algorithm Selection: (2)

CHEMDIST

- Mechanically simple columns, complex thermo
- True VLLE
- Azeotropic and Reactive distillation
- Sidestrippers solved by recycle
- No Pumparounds or Thermosiphons
- More sensitive to bad initial estimates

Distillation Algorithm Selection: (3)

- > SURE
 - Very general: Complex column and thermo
 - Use when I/O and Chemdist do not apply
 - Newton Method
 - Very sensitive to bad initial estimates

	Inside/Out (I/O)	CHEMDIST	SURE
Unique Features	Unique • Side & main columns • Reactive • VLLE of • VLLE of		 Total Pumparounds VLWE on any tray Water draw any tray
Strengths	 Very fast Insensitive to initial estimates 	 Highly Non-Ideal Systems 	 Generality
Limitations	 Thermo non-ideality NO VLLE capability (VLWE at condenser) 	 No Pumparounds Side columns solved as recycles 	 Slow Sensitive to initial guesses
Applicability	 Hydrocarbons EOS & Slightly non- ideal LACT Thermo Interlinked columns 	 Non-Ideal Systems Mechanically simple columns VLLE within column 	 Free water or water draw on trays other than condenser Total pumparounds or vapor bypass

경사 분리기(Decanter)의 전산모사 기법

Decanter Simulation:

Assume OVHD Vapor Composition, V around ternary azeotrope

	Mole %
Benzene	53.00
IPA	31.00
Water	16.00

Decanter Simulation:

```
TITLE PROJ=AZEOTROPE, PROB=FLASH,USER=J.H.CHO
PRINT INPUT=ALL, RATE=M, FRACTION=M, PERCENT=M
DIMENSION METRIC
COMPONENT DATA
LIBID 1,BENZENE/2,ETHANOL/3,WATER
THERMODYNAMIC DATA
METHOD SYSTEM(VLLE)=NRTL, SET=NRTL01
STREAM DATA
PROP STRM=V, TEMP=70, PRES=1.033, RATE(M)=100, & COMPOSITION(M)=1,53/2,31/3,16
UNIT OPERATIONS
FLASH UID=COND, NAME=Condenser, KPRINT
FEED V
PRODUCT L=R, W=W
ISO TEMPERATURE=45, PRESSURE=1.033
```

```
END
```

	V (Mole %)	R (Mole %)	W (Mole %)	
Benzene	53.00	73.3072	3.1511	
Ethanol	31.00 24.0964		47.9467	
Water 16.00		2.5965	48.9022	
Flow Rate	100 %	71.05 %	28.95 %	

공비 증류탑(Azeotropic Column)의 전산모사 기법

Azeotropic Column Simulation:

Azeotropic Column Simulation:

 $V=127.4\,\mathrm{K\text{-mol/hr}}$, $F_2=21.79\,\mathrm{K\text{-mol/hr}}$

Azeotropic Column Simulation:

Stripper의 전산모사 기법

Azeotropic Distillation Process: Scheme 1

Azeotropic Distillation Process: Scheme 2

Azeotropic Distillation Process: Scheme 3

전체 공정에 대한 공정 최적화

전제 공정에 대한 PRO/II Flow Sheet

전체 공정에 대한 공정 최적화:

THANK YOU