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Introduction

The adsorption of macromolecules like latexes, proteins, bacterita and
enzymes has played an important role in many different industrial fields,
which include chromatographic separation, filtration, water cleansing and
biofouling. Despite the importance, the theoretical analysis of these processes
are still at the beginning stage. The interactions between the adsorbed
particles and those in the vicinity of the surface are difficult to account for
theoretically. Furthermore, since the adsorption of large molecules and
microparticles is often irreversible, one cannot necessarily use the method of
equilibrium statistical thermodynamics.

Recently, a realistic model, which specially includes a transport
mechanism, has been proposed in which the deposition is represented as a
diffusion adsorption of hard spheres[1,2,3]. Through a careful simulation study
of 1D diffusion random seqguential adsorption (DRSA)[4], the saturation
coverage of this process(0.7529) is slightly, but significantly, larger than that
of simple 1D RSA(0.747). The reason for this discrepancy is that the
diffusion process leads to a non-uniform distribution of particles within the
available gaps. In this paper, we extend the generalized parking process to
allow for this possibility and compute the saturation coverage which results
from an adsorption rate found from both approximate and exact solutions of
the steady state diffusion ecuation.

Non wuniform deposition of DRSA

In this section, we describe a general one dimensional model with non-
uniform addition rates. We introduce #(%", h) to denote the probability per
unit length and per unit time that deposition of a disk in a gap of length
#>1 produces gaps of length h and A —h—1 (the position of the center
of the new disk within the gap is thus x= A+1 relative to the center of the
disk on the left of the gap) when the diameter of a particle is 1.

The governing kinetic equation for the adsorption process is:
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where G(h, 1) is the number of gaps with length # at time ¢ If the disks
are identical, we expect Kh',h) is a symmetric function,

Kh' h)=k(h',h —h—1). Thus, the above equation can be simplified as
follows:

8G§aI;, D =—ky(R)G(h, ) +2 f:ldh'(;(h', Dk(K | h). )

This equation together with the initial condition G{#4, t=0)=0, and the
normalization condition

fdh(1+h>c(h,t)=1 3)

determines completely G{k,1). The function ky(A4) is the total rate at which
gaps of length & are destroyed by the addition of a new particle:

h—1
ko ) =J[; di K, b ()

and clearly ky(#) =0 if h<{l.

t us consider the problem of disks adsorbing irreversibly on a line
segment of length /4 to determine the average number of disks that are in
this gap after an infinite time, N (k). A key observation is that insertion of
one disk into the gap at length % produces two additional gaps of length A’
and h—H —1. Therefore, one may write the following recursion formula:

h-1
Na(=142[" Na(k)PhK)dK, )
where P(h, k') is the probability that insertion of a disk into the gap of

length # produces gaps of length # and A—A —1.
Eq.(5) has an interesting by-product. Clearly, we know the initial

solutions:
NO(mw=9, 0<h<1, (6)
N&(w=1, 1<h<2. 7

Higher order functions may be conveniently and accurately computed
numerically using the recurrence relation. The mean saturation coverage of

particles adsorbed in a confined gap of size £ is

6(m="N=tD ®

From Rényi's original workl|5], one has the following asymptotic relation:
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To obtain the rate of arrival of Brownian disks at any point of the line, it
is necessary to solve the diffusion equation for the probability distribution of
the position of the center of the new diffusing particle, ¥ r, ),

vig=y, (10)
where the assumption of quasi-steadv state is applied, with an adsorbing
boundary along the line,

U=, at z=0, (1D
and reflecting boundaries at the exclusion surfaces of the preadsorbed disks:

or _ _

5, =9 at r=1. (12)

Far from the surface, we assume a uniform flux of increasing particles,
J=—Jw z in cartesian coordinates and J,=Jwcos8, Js=Jwsiné in polar
coordinates,
Jeo = P+ Py = constant as r-—oo, (13)

Then, the rate of arrival of new disks at a given point depends on the
distribution of previously adsorbed disks on the entire line. Nevertheless, it is
natural to assume that only the nearest disks, i.e., those located at the ends
of the free gap, have a noticeable influence.

If only one disk has been adsorbed, the steady solution of the diffusion
equation is, using polar coordinates centered at the center of the fixed disk,

Wy, 0= (r+1/7r)cos8b, 1 (14
from which one obtains the rate of arrival of new disks at a point at
distance » from the center, K9 ,o0=—D(3%/32) ,—y=J(1+1/¥). The
flux of disks increases in the vicinity of the origin ( #>1) as a consequence
of reflecting from the fixed disk. Now, in the absence of disks, /= /.. If

two disks are present, we assume as a first approximation that the
deviations from this value produced by each disk are independent and can be

added. Thus, J(N=1+1/7#+1/#5, » and 7, being the distance to the

centers of each disk. After normalization one finds

P(h k)= 1+(h+1) 2+ (1 —h) 2. (15)

— [
(B =1)(K +2)

Then, a first approximation to the DRSA process is obtained using P; as
valid for any value of # and 4 in the recursion relation (5). From the
extrapolation  of B(h) vs1/h  curve to 1/A=0, we  obtain
8 .. =0.750621 +0.000022 confirming that both methods give the same

coverage values.
In order to assess the accuracy of the independent disk assumption used
alone, we have also obtained the exact solution of the deposition problem in
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the presence of 2 disks. In bipolar coordinate system- &, 7, the diffusion
equation now reads

3w | 3*w _
a7 + & =0. (16)
with boundary conditions
U=y, at £=0, «, (1n
0¥ _ _
a7 =0, at 7= ta, (18)

Therefore, the problem is separable. The normalized result for the particle
flux in the region between the disks is given by the convergent series

o - n+1 - na
]=§15[1+2(1+cosh77) Eli )" _ne

sinh na

cosh7]. (19)

This J is exactly the function P,. It depends on A = L—1 through the

coefficients @ and ¢ and on £ through the coordinate 7 of the arriving
point (x=ctanh7/2 and k= L/2—x—1). After inserting (19) into (5) and
computing numerically, one finds a value of the coverage 8= 0.75102, only

slightly different from the result obtained with P, 8= 0.7506. Thus, even

a first approximation can be enough to estimate the jamming coverage of
DRSA process.

Conclusion

We have developed a general kinetic equation for 1D non-uniform
deposition processes and recursion formulae for the saturation coverage. In
DRSA, the non-uniformity is induced by the diffusion of the adsorbing
molecules. The saturation coverage obtained from the first approximation
does not differ greatly from that correspond to the exact analytic solution in
the process of two disks. These results are also consistent with numerical
simulations of the DRSA process, if proper allowance (throughout a scaling
relation) is taken of the finite lattice of the simulation. Moreover, the position
dependent flux of the particles obtained from the simple approximate solution
of the diffusion equation is consistent with the data obtained from Monte
Carlo simulation of DRSA.
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