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Introduction

  The self-diffusion of lamellar diblock copolymers in their melts has attracted considerable attention in recent years1-8 because of a variety of structural and dynamic behavior these copolymers exhibit. The self-diffusion coefficient of these copolymers and the blends are usually described by Williams-Landel-Ferry (WLF) equation2-5 or Vogel-Fulcher equation.9 Use of the WLF equation for the copolymers involves choosing two parameter values by fitting data. Hamersky et al.1 pointed out that the equation does not have predictive capability. In its place, they suggested four methods of predicting the copolymer mobility but with little success. Shull et al.4 arrived at a conclusion that the WLF equation would not be expected to be valid for block copolymers when fluctuation effects are important.

Results and Discussion

  In this note, we propose a method for predicting the self-diffusion coefficient on the basis of friction coefficient. According to the reptation model, the pure component friction coefficient10 is given by
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                             (1)

where Ds is the self-diffusion coefficient, M0 is the monomer molecular weight, Me is the entanglement molecular weight measured from the shear modulus or the plateau modulus, M is the molecular weight of the diffusant, k is the Boltzmann constant, and T is the temperature. For unentangled Rouse polymers10,
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For blends involving two homopolymers A and B, the entanglement molecular weight of the blend,9,11 

, is related to its constituent entanglement molecular weights as follows:

                 
[image: image3.wmf]1

1

2

1

2

1

2

[

]

[

]

[

]

/

/

/

M

f

M

f

M

e

AB

A

e

A

B

e

B

=

+

                (3)
where fA and fB are the compositions of the constituent homopolymers. The same relationship is applied to the copolymers here in our model. The inability of small molecules to form entanglements is accounted for by setting the corresponding Me to infinity.12 Accordingly if the homopolymer A is the unentangled polymer, eq 3 reduces to  
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   Hamersky et al.1 suggest that an average local friction coefficient in polymer mixtures be estimated from
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Substituting eq 1 into eq 5 and solving the resulting equation for DAB with the aid of eq 3 leads to

            
[image: image6.wmf]log

log

log

D

f

D

f

D

AB

A

A

B

B

e

=

+

+

+

a

a

                 (6)

where,


[image: image7.wmf]ú

û

ù

ê

ë

é

=

B

A

B

A

f

B

0

f

A

0

AB

f

B

f

A

AB

0

)

(M

)

(M

M

)

(M

)

(M

M

log

α

 ,
[image: image8.wmf]a

e

=

é

ë

ê

ù

û

ú

log

(M

M

M

M

M

M

e

AB

AB

e

A

A

f

e

B

B

f

A

B

)

(

)

(

)

   (7,8)
where the subscript 0 denotes monomer. When one of the homopolymers is unentangled polymer, say homopolymer A, eq 2 applies in place of eq 1 for the homopolymer A and therefore, eq 4 applies instead of eq 3. However, the same relationship (eq 6) holds with only (e changed as follows:
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  Three sets of data are used to check the adequacy of the proposed model. Of these, two sets involve PS-PI(polystyrene-polyisoprene) block copolymers for which the PS block contributes little to the entanglements.1,3 The other set has to do with PEP-PEE (poly(ethylenepropylene)-poly(ethylethylene)) block copolymer for which both contribute to the entanglements. There are four parameter values needed to use the model for prediction along with the diffusivities of the constituent homopolymers. These are the composition of one of the constituent homopolymers fA or fB, the molecular weight of the block copolymer MAB, and the entanglement molecular weights, 

 and 

, of the constituent homopolymers that are usually available in handbooks, e.g., reference 13. The values of these parameters for the three systems are given in Table 1 along with the entanglement and interaction factors determined from these parameters.

   Shown in Figure 1 is the self-diffusivity of PS-PI copolymer as a function of temperature, compared with the Hamersky et al.’s model1(dashed curve) and with our model prediction (solid line).   
  The data obtained by Ehlich et al.2 are shown in Figure 2 along with their fit (dashed curve) and our model prediction (solid line) for a PS-PI block copolymer with a number-averaged molecular weight of 2.12×104 and a PS content of 42 % by weight. The diffusivities of the constituent homopolymers are those given by Ehlich et al. The dashed curve represents the fit obtained by them by neglecting the contribution of PI and using the WLF equation for polystyrene for the copolymer with a change in the glass transition temperature.  

   Shull et al.4 obtained diffusivities of a PEP-PEE (poly(ethylenepropylene)- poly(ethylethylene)) block copolymer with a number-averaged molecular weight of 50,100. The PEP block contains 95％ alternating ethylene and propylene units with 5％ randomly distributed polyisobutylene units. The PEE block is > 98％  poly(ethylethylene). Their prediction of the copolymer diffusivity is shown in Figure 3 (dashed curve). Also shown is our model prediction (solid curve). 
  In summary, a model is proposed for predicting the self-diffusion coefficient in the order-disorder transition. The model does not involve any fitting parameter and yet predicts the diffusivity fairly accurately. The proposed model can predict the diffusivity involving unentangled copolymer, where the existing theories fail.
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Figure 3. Diffusivity of PEP-PEE block copolymer as a function of temperature.4 The solid curve corresponds to our model prediction and the dashed curve corresponds to Shull et al.’s result.
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