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Introduction
It has been about 10 years since the first intentional preparation of hyperbranched polymer was disclosed. Hyperbranched polymers, as well as dendrimers, may find utilities in the areas where the structural uniqueness of these polymers gives merits. There has been much progress in the structural understanding and the methods of synthesis of these polymers, However, functional understanding and the method of synthesis of these polymers are still in infancy. Better understanding on physical properties of these polymers, and functional group dependency to the thermodynamic properties is needed for further development of the subject.

Many potential applications for dendritic polymers have been proposed. These include nanoscale catalysts and reaction vessels, micelle mimic, magnetic resonance imaging agent, immuno-diagnostics, agents for delivering drugs into cells, chemical sensors, information-processing materials, high-performance polymer, adhesive and coating, separation media, and molecular antennae for absorbing light energy. These applications spring from the unusual highly branched architecture and properties of dendritic macromolecules. In addition, they have a lot of chain-ends that may take part in hydrogen-bond formation or specific interactions, so that the effect of the end-group is too large to ignore in the thermodynamic properties in dendritic polymer solutions.

In this study, we investigated liquid-liquid equilibria of hyperbranched polymer solutions. The experimental technique used to determine the cloud points of the systems was the Thermo-optical analysis (TOA) technique.  
Recently, Freed et al. have developed a systematic expansion of the partition function of lattice polymer using well-known lattice cluster theory (LCT). This model takes into account the effect of branching on the thermodynamic properties of polymer solutions. To predict phase behavior we modified the LCT model to account for strongly interacting hydrogen bonds between solvents and endgroups of hyperbranched polymer by employing the concept of Veytsman’s hydrogen bonding model.

Experimental

The hyperbranched polymers, generation 2, 3 and 4 were purchased from Aldrich Chemical Co. (44706-4, 44707-2, 44708-0). All polymer samples were used with no further purification. Distilled deionized water was used as a solvent. The structure and schematic of the polymers are listed in table I and Fig.1, respectively

Table I. The structures of the polymers

Hyperbranched  Polyol
Structure

 Gen. 2
[O[CH2C(CH2H5)(CH20-)2]2A4B8 

Gen. 3
[O[CH2C(CH2H5)(CH20-)2]2A4A8 B16 

Gen. 4
[O[CH2C(CH2H5)(CH20-)2]2A4A8 A16 B32

                              A = [COC(CH3)(CH2O-)2] , B= [COC(CH3)(CH2OH)2]
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Fig.1 Schematic of Hyperbranched polymer generation 3
Samples were prepared in separate test tubes and the composition of each sample was precisely measured gravimetrically. Each solution was stirred for 5 h or more. The solution was transferred to a Pyrex tube and the sample tube was flame-sealed under nitrogen atmosphere. The cloud-point curves were determined at the saturated vapor pressure of the solvent. TOA apparatus consists of a heating-cooling stage, a photodiode (Mettler FP82) and a microprocessor (Mettler FP90). An IBM PC was used as a data acquisition system.

Model development
Freed et al.3 have proposed a lattice cluster theory (LCT) for homogeneous dendrimers. We apply this model to the hyperbranched polymer solution. The free energy is given in a double expansion series with 1/z and ((ps((=1/kT). We truncate the series at the fourth order in 1/z and the second order in ((ps. The free energy of mixing for polymer-solvent system is given by 

[image: image1.wmf]int

A

A

A

ath

LCT

D

+

D

=

D

  
 where
[image: image2.wmf]int

A

D

and
[image: image3.wmf]ath

A

D

are the contribution of the attractive interaction and the athermal limit of the entropy of mixing, respectively.
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EMBED Equation.3[image: image7.wmf]2

2

2

)

2

(

)

1

(

)

1

(

)

(

f

f

-

+

+

B

B
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where N(()=N(/M ( (= 1,2,3 or () and N((()=N(,(/M ( (= 1or 2)

The combinatorial numbers, N( and N(,( , describe the architecture of polymers. ( is the interaction energy and 
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, where T is an absolute temperature and k is a Boltzmann's constant.
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 are monomer and polymer volume fractions, respectively. 
For specific structure defined, the structure factors are calculated as listed in Table II.

  Table II. geometric factors of hyperbranched polymer structure

Parameter
 

M
4 (2g-1-1) (n+2g(2+n0+2

N1
M-1

N2
4 (2g-1-1)((n-1)+3( N(+n0

N3
4 (2g-1-1)((n-2)+6( N(+n0-1

N(
4 (2g-1-1) +2

N1,1
4 (2g-1-1)(2(n-2)+(n-2)(n-3))/2+4 (2g-1-1) n (4 (2g-1-1)-1) n /2 

-3(4 (2g-1-1)-2-2g)-2+(n0+1) 4 (2g-1-1) n /2 -2(2+(n0+1) n0 /2 - n0 

+(2g(2)( 2g(2-2)/2+(2g(2)( 4 (2g-1-1)n)/2-2g(2+( n0+1)( 2g(2)/2

N1,2
4 (2g-1-1)(n-2)(n-3)+3(4 (2g-1-1)-2-2g) ((4 (2g-1-1)n)

-(4 (2g-1-1)-2g)(3(5-2(3+3+4)+ 4 (2g-1-1)(n-1)*( 4 (2g-1-1)-1) n

-2(5+n0(4(2g-1)n-2(2+2(n0-2)+(n0-2)(n0-3)+ 4(2g-1)(n-1) (2g(2-2g(2

+(4 (2g-1-1)+2-2g) (3(2g(2+2g(3(4(2g-1-1) (n-2g(5+2g(3((2g(2-2)

+n0(2g(2+2g(3((n0+1)

g : The number of generation

n: The number of segment between generation points

n0: The number of core segments

In this model, we use the hydrogen-bonding model of Vaytsman7 to consider three types of specific interactions (endgroup-solvent, innergroup-solvent and solvent-solvent)
Free energy due to specific interaction is given by
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where 
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 are determined by the set of quadratic equations
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Mij : The number of (i,j) bonds

Ni : The number of component i molecules

di : H-donor sites of an ith kind molecule

ai : H-acceptor sites of an ith kind molecule

Fij : The free energy of an (i,j) bond formation 

Results and Conclusion
In this study, we introduce the contribution of the specific interaction to the free energy of mixing for the lattice cluster theory. The solubility increases with a number of polar end-group of dendrimer in polar solvent. Since our model takes into account both the contribution of the end-groups and the specific structure of polymer, we could apply this systematic tool to predict the phase behavior of hyperbranched polymer-solvent system
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