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1. INTRODUCTION
Until now, most researchers in system identification field have concentrated their efforts on developing discrete-time identification methods like prediction error, instrumental variable or subspace identification methods [1],[2]. But, we should use continuous-time approaches under certain circumstances. 

Many continuous-time system identification methods have been proposed like using block pulse functions, multiple integrators, linear integral transform, complex variable transform [3], delta operator [4] and ball-shape weighting integral transform [5]. Several papers have been presented to analyze the effects of numerical derivatives and remove/compensate the bias in the estimation problem [6].

The above-mentioned previous methods have several disadvantages: Previous discrete-time approaches have problems that an irregular sampling period cannot be incorporated without major modification since the adjustable parameters are not constant for the irregular sampling period. Also, a small sampling period and/or a continuous-time input cannot be treated with acceptable accuracy. On the other hand, previous continuous-time approaches using integral transforms or delta operator cannot manipulate a large sampling period. Also, they cannot give unbiased estimates for closed-loop test data sets without special modifications.

To overcome these disadvantages, we propose a continuous-time prediction error method as a counterpart of discrete-time prediction error methods [1] to identify combined deterministic-stochastic continuous-time process. Similar to discrete-time cases, it identifies the system parameters by minimizing the prediction error using the Newton optimization method with analytical derivatives of the objective function with respect to the adjustable parameters.
2. CONTINUOUS-TIME PROCESSES

In this paper, we consider the following multi-input, single-output (MISO) process.
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where 
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 is the n-dimensional state. The problem in this research is to estimate the system matrices 
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Here, (1) and (2) can be rewritten equivalently like the following continuous-time Auto-Regressive, Moving Average, eXogenous input (ARMAX) process.
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where, 
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3. PORPOSED CONTINUOUS-TIME PREDICTION ERROR METHOD

Like discrete-time prediction error methods [1], we estimate the system matrices minimizing the prediction error. In this research, first, we identify the deterministic part (
[image: image23.wmf]B

A

,

) by solving the output error minimization problem and second, the stochastic part (
[image: image24.wmf]K

) is identified. However, if simultaneous identification is preferred due to some reasons it can be developed directly by combining the separated two steps.

3.1 Identification of Deterministic Part

We estimate the deterministic part of the combined deterministic-stochastic model by solving the following output error minimization.
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where, 
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 denote the process output and the model output, respectively. To solve this optimization problem, we use the following Newton method, which repeats (10) until the parameters converge within tolerance.
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where, 
[image: image33.wmf]j

 denotes the iteration number and the rate constant is 
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. By choosing a large rate constant we can increase the convergence speed. But, if the parameters fluctuate or diverge the rate constant should be reduced.

The derivatives of the objective function with respect to the adjustable parameters can be calculated as follows: From (6), (12)-(15) are derived.
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From (8) and (7), (16)-(17) and (18)-(19) are obtained.
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where, 
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 has 1 for the n-k+1-th component and 0 for others. 
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Here, the error 
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In summary, we calculate the prediction error 
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 from (7) and (8) and the first and second derivatives of the objective function with respect to the adjustable parameters from (12)-(19) and (21). Then, we estimate the updated parameters 
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Remarks: 

1. The proposed approach can incorporate directly this irregular sampling period due to measurement problems.

2. Like discrete-time prediction error method, even though the actual output error is a colored noise that uncorrelated with the process input and the process output, the proposed strategy gives unbiased estimates. It also provides unbiased estimates for the case that the process input is a feedback signal (that is, closed-loop test signal).

3. We can say that the discrete-time model identification method calculates the matrix 
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 indirectly after the step of estimating 
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(sampling period dependent matrix). When the sampling period is very small 
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 unstable or severely erroneous for the small sampling period case.

3.2 Identification of Stochastic Part

In a similar way, we estimate the stochastic part of the combined deterministic-stochastic model by solving the prediction error minimization for given deterministic part of 
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subject to
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If 
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In the identification of the deterministic part, we can choose any arbitrary 
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To solve this optimization problem, we use the Newton method as the deterministic case, which repeats (26) until the parameters converge within tolerance.
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where, 
[image: image77.wmf]j

 denotes the iteration number and the rate constant is 
[image: image78.wmf]1
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. Effects of the rate constant are the same as the deterministic part identification. The first and second derivatives of the objective function with respect to the adjustable parameters can be calculated as the deterministic case.

Remarks:

1. The proposed strategy for the stochastic identification also gives unbiased estimate under a feedback signal.

4. SIMULATIONS

The following process is simulated to confirm the identification performance of the proposed method and to compare it with an existing discrete-time prediction error method (OE in Matlab). 
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The process input is a Random-Binary-Sequence (RBS) with the minimum switching time of 0.5. The variance of 
[image: image81.wmf])
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 is 0.0001. This simulation exemplifies that the discrete-time approach of a small sampling period might result in unacceptable worst performance even very small noises even though it shows good results for the large sampling period. The proposed strategy shows good results for the small and the large sampling period. Previous continuous-time approaches using transforms cannot be applied to the large sampling period because the numerical integration is impossible for the large sampling period. The proposed strategy can incorporate both the small and large sampling period.

5. CONCLUSIONS

We proposed a continuous-time prediction error identification method. It has advantages compared with previous continuous-time and discrete-time identification methods since it can incorporate a large and a small sampling period test data as well as an irregular sampling period due to measurement problems. Also, it is more attractive than any other previous works minimizing equation errors because more meaningful criterion for system identification should be based on the output error minimization. The proposed method can also incorporate open-loop as well as closed-loop test data sets. Simulation results show superiority of the proposed method compared with discrete-time prediction error identification methods that provide poor robustness to noises when the sampling time is small.
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