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1. Introduction

In this presentation, we will talk about several interesting issues on system identification. First, we will review the previous discrete-time/continuous-time system identification methods like prediction error methods, instrumental variable methods, subspace system identification method, continuous-time system identification methods using transform. Second, we will compare the continuous-time system identification methods with the discrete-time system identification methods and justifies the necessity of continuous-time system identification methods by exemplifying practical situations. Third, we will talk about the importance of choosing proper test signal for system identification. Fourth, we will present the nonlinear multivariable stochastic state space system identification as the ultimate goal of the future system identification.

2. Previous System Identification Methods

System identification methods for linear systems have been published until now can be classified into two categories of the discrete-time and continuous-time identification. The continuous-time (discrete-time) identification method is to identify the continuous-time (discrete-time) process model represented by differential (difference) equations.

2.1 Discrete-time System Identification Method

Representative discrete-time methods are prediction error methods (PEM), instrumental variable methods (IVM) and subspace system identification methods (Ljung (1987), Söderström and Stoica (1989), Forssell and Ljung (1999), Larimore (1990), Verhaegen (1994), Van Overschee and De Moor (1994)). The discrete-time (difference eqation) linear model can describe exactly the process dynamic behavior at every sample if the process input between samples is held by the zero-order holder. One example of the difference-equation model is Auto-regressive, Moving Average, eXogeneous input (ARMAX) model like the following.
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where, 
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 are the process output, process input and the white noise (or prediction error), respectively. 

2.1.1 Instrumental Variable Method (IVM)

The objective of IVM is estimating the deterministic part of (1), that is, 
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. To do that, we use “instrument” which is uncorrelated with the stochastic part of (1), that is, 
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 and is correlated with the regression vector to prevent singularity. Here, if the instrument is the same with the regression vector the solution of IVM becomes that of the least squares method.

2.1.2 Prediction Error Method (PEM)

The objective of PEMs is obtaining the system parameters of 
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 minimizing the prediction error of the optimal one-step-ahead predictor. For the ARMAX model, the optimal predictor (here, “optimal” means using all possible information to predict the process output) is
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Then, PEM for the ARMAX model estimates the system parameters minimizing the prediction error.
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To solve the nonlinear optimization problem of (3), Newton method or multi-stage least squares method can be used. 

2.1.3 Subspace System Identification Method

Discrete-time subspace system identification methods have attracted much attention during the past few years due to ability of identifying multivariable linear processes directly from the input-output data. Compared with the classical PEM and IVM, these subspace methods do not suffer from a parameterization and nonlinear optimization. Also, their properties and common features have been analyzed well (Van Overshee and De Moor (1995)) and their extensions to closed-loop process data have been developed (Chou and Verhaegen (1997), Ljung and McKelvey (1996)). The objective of discrete-time subspace system identification methods is identifying the system matrices, 
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 as well as the process order of the following discrete-time state space model.
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2.2 Continuous-time System Identification Method

The objective of continuous-time system identification methods is to estimate the system parameters of the process model represented by linear differential equations. For example, the continuous-time ARMAX model would be like this.
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And the continuous-time state space model would be like this.
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Many continuous-time system identification methods have been proposed like using block pulse functions (Cheng and Hsu (1982)), multiple integrators (Whitfield and Messali (1987)). These functions produce initial value problem. So, the above-mentioned methods cannot incorporate unknown initial conditions effectively. To overcome this, linear integral transform or macro-difference expressions (Sagara and Zhao (1989), Eitelberg (1988)), digital filtering approaches (Sagara et al. (1991)) and ball-shape weighting integral transform (Sung et al. (1998)) have been developed. Sung et al. (2000) proposed continuous-time subspace system identification method.

3. Interesting Issues on System Identification

Discrete-time prediction error methods and discrete-time subspace methods have been developed so well that they look like panaceas and researchers having interests on other topics have been overwhelmed. This is not so desirable when considering potential values of other topics. We need to pay attention to topics have not attracted much attention until now. Nobody can say there are no fruitful results before exerting their efforts. In my point of view, the following several interesting issues are potential golden gooses in improving identification results.

3.1 Necessity of continuous-time system identification method

All discrete-time methods identify a discrete-time state space model. Considering most processes are controlled by digital computers with zero-order holder, the discrete-time identification approach is a good choice to identify the dynamic behavior of actual processes. However, this is not always true. We analyze the practical problems of discrete-time identification methods: If the process input is a continuous-time signal (for example, cascade control system) we cannot use discrete-time models with usually chosen sampling period. On the other hand, if we decrease the sampling period to approximate the inter-sample dynamics the identified estimates are very sensitive to uncertainties like measurement noises or structural uncertainties and round-off errors. The uncertainty bound of estimates in continuous-time system identification becomes smaller as decreasing the sampling period. Contrarily, the bound in discrete-time system identification increases as decreasing the sampling period. From simulation studies, prediction error methods as well as subspace system identification methods show totally unacceptable performances for nearly negligible uncertainties when the sampling period is small. Contrarily, continuous-time subspace identification method shows better results for smaller sampling period.

3.2 Test signal generation

In practice, there are many candidates in choosing the test signal (Cutler and Ramaker (1979), Godfrey(1993), Astrom and Hagglund (1984)). Choosing test signals can produce much bigger different identification results than we might think (Zhu et al. (1995), Kaljurand et al. (1996), Sung and Lee (1999)). For example, consider the identification of the Finite Step Response (FSR) model for Model Predictive Control (MPC). In this case, use of Pseudo-Random Binary Sequence (PRBS) can guarantee better results compared with RBS or step signal. Moreover, different design parameters of the PRBS signals result in different identification performances. Especially, for small number of samples, the differences may be really remarkable. But, we have not paid much attention to the design of the test signal generation compared with the importance.

3.3 Nonlinear Multivariable Stochastic State Space System Identification

Let us ask like this. What is the ultimate goal of the system identification? In our opinion, the answer is estimating the nonlinear multivariable stochastic state space model. We justify the statement like the following. 1. The reason of adopting a stochastic model is to include the previous prediction errors in predicting the future process output. By doing this, we can improve much more the prediction accuracy. 2. Big processes have many process outputs and process inputs and interactions between process outputs. 3. Actual processes are nonlinear. 4. For multivariable processes, state space models can represent the dynamic behavior more compactly (means using smaller adjustable parameters) compared with time-series models. Several approaches using time-series model (Nerrand et al. (1994), Chen et al. (1990)) have been proposed to identify nonlinear processes. Several authors introduced recurrent neural network models to parameterize the nonlinear state space model implicitly or explicitly (Srinivasan et al. (1994), Cheng et al. (1995), Parlos et al. (1994), Chong and Parlos (1997)). But, most of them don't use the previous prediction errors. Suykens et al. (1995) parametrized the extended Kalman filter using recurrent neural network. But, Sung et al. (2000) parameterize more general predictor form than the extended Kalman filter. Surely, we should still solve several problems like local minima, complexity, computation load etc. to achieve the goal. We hope remarkable merits of the nonlinear multivariable stochastic state space model are realized some day by solving the problem one by one.
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