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1. Introduction

Constrained model predictive control is widely accepted as a standard advanced control strategy in process industries. However, it is not an easy task to find good models for model predictive control. Moreover, the process dynamics often changes due to contamination and so on. Under these circumstances, the adaptation is quite desired in practice. 

Recently, combining subspace identification and model predictive control, the so called subspace predictive control strategies are proposed [1]. In subspace identification, a optimal input-output relationship is first obtained and a state space model is found in the following steps. one can design model predictive control using the state space model from subspace identification. However, in the subspace predictive control, the optimal input-output relationship is directly used in model predictive and thus the number of steps required for model predictive control is substantially reduced. In this paper, a couple of adaptation laws are combined with this subspace predictive control and their performance are illustrated with examples.

2. Main Results

Consider the time-invariant, discrete time, linear system
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 is the unknown noise. Suppose available are the input and output measurements 
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. Then the first two steps associated with subspace identification are as follows.

Step 1: Form the matrices
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Step 2: Find the best approximation of input output model 
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 by solving the least square problem:
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After these two steps, a state space model is obtained through singular value decomposition. In the subspace predictive control, the linear input output model obtained in the second step of the subspace identification is directly used for control input calculation of the model predictive control. Namely the control is computed by solving the following quadratic programming problem:
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subject to input output model and input saturation constraints, where 
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 is the reference trajectory. In this paper we propose an adaptive version of subspace predictive control by updating the process model during the operation of the control system. Three different updating laws are considered. In the first updating law, the current process input and output data are augmented in the data matrix in the first step of subspace identification.  In the second, the current process input and output data are augmented and the oldest ones are discarded. The second technique is clearly moving window approach. In the third, the accuracy of input output model is checked every time and the current process input and output data are augmented whenever the current model is not accurate for current input output data.

3. Example

Consider the process with
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The weighting matricies in the cost function are
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The input constraints we consider are 
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Simulation results are given below.
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                  Constrained MPC without adaptation
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                   Constrained adaptive MPC with augmentation only
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                  Constrained adaptive MPC with moving window
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                  Constrained adaptive MPC with accuracy check
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