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1. Introduction
 The square-well fluid is a simple model for a real fluid that has a vapor-liquid transition. The segment-segment potential energy between two nonbonded segments, interacting via a square-well potential, is given by

                
[image: image29.wmf]r*

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Z (compressibility factor)

0

5

10

15

20

25

30

35

40

T*=1.5 

T*=2.0 

T*=3.0 

T*=4.0 

this work

Banaszak, Chiew and Radosz

Simulation data

                 (1)       
where r is the intermolecular distance, 
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 is the hard-core diameter, ( is the well-depth, and ( is the well-width. This potential has the advantage over Lennard-Jones potential that analytical treatments are possible. 

There are lots of theoretical studies for square-well monomer fluids, while the use of square-well potential for polyatomic fluids have been scarce and even these studies have been limited only in the case of 
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Integral equation theory provides an accurate route to calculate the pair correlation function and related thermodynamic properties, but does not result in an analytic solution for the square-well model and requires much computation time. Perturbation theory, successful for simple fluids, requires less computation time than integral equation theory and can make possible an analytical solution.

 In the previous work Chang and Kim obtained an analytical radial distribution function (RDF) of hard-sphere chain fluid from Wertheim’s multidensity Ornstein-Zernike integral equation theory with the polymer Percus-Yevick ideal chain approximation. In this work we present an analytical eqution of state for square-well chain fluid at 
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 using the previous analytical RDF and the Barker-Henderson perturbation theory. We then determine compressibility factors, vapor–liquid equilibria of the square-well chain fluid at 
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, and compare the results with Monte Carlo (MC) simulation data and the prediction of thermodynamic perturbation theory (TPT) which is performed by Banaszak, Chiew and Radosz.

2. Theory

 In perturbation theory the Helmholtz free energy of the system is expanded in the inverse temperature around that of a reference system whose thermodynamic properties and structural information are known. The second-order expansion of the Helmholtz free energy is of the form
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where 
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 is the Helmholtz free energy in excess of that of an ideal gas at the same temperature and number density for the reference system and 
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 is the excess Helmholtz free energy of the reference system.  
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 and 
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 are the first- and the second-order perturbation terms for the Helmholtz free energy, respectively.  N is the number of molecules, 
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 is the Boltzmann constant, T is temperature, and T* is the reduced temperature (
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 are derived from knowledge of the equation of state and the RDF of the reference fluid.

 The first-order perturbation term for square-well chain fluid around the reference hard-sphere chain fluid is given by
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 EMBED Equation.3  [image: image16.wmf]

 EMBED Equation.3  [image: image17.wmf]
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 The second-order perturbation term was obtained by the local compressibility approximation of Barker and Henderson. For square-well chain fluid, 
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where 
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p

 is the pressure of the hard-sphere reference fluid at the same density and temperature.  Although the second-order perturbation term is generally small in magnitude, it improves the accuracy of the perturbation theory at low densities.

3. Results and Discussion
 We have developed an analytical equation of state for the square-well chain fluid of variable well width (
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) based on Barker-Henderson perturbation theory using the analytical expression for the radial distribution function of hard-sphere chain fluid that Chang and Kim have recently developed. For the integral in the first- and the second-order perturbation terms, we utilized Tang and Lu’s Hilbert transform result.  
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To test the equation of state, we compared compressibility factors and vapor-liquid equilibria data which are calculated from our EOS with Gibbs ensemble Monte Carlo simulation results and the prediction of  TPT. 
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Fig.1 Comparison our EOS with simulation data and the prediction of TPT

( m=2 , 4 , 8 , 16  i.e. dimer , 4-mer , 8-mer , 16-mer )
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