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Introduction
Group-contribution models are very efficient tools to describe thermodynamic properties of fluid mixtures. Since the suggestion of Langmuir, group-contribution models have been investigated and developed by numerous authors as two categories, corresponding to a particular statistical frame work: equation-of-state (EOS) model and excess Gibbs energy model. 

The most widely used and best known of the excess Gibbs energy group-contribution model is the UNIFAC (UNIQUAC Functional group Activity Coefficients). It combines the concept of functional groups with analytical results of the UNIQUAC (UNIversial Quasi-chemical Activity Coefficients), which is based on Guggenheims quasi-chemical theory, contains a combinatorial part, due to differences in size and shape of the molecules in the mixture, and a residual part, due to energy interactions. It is successful for semiquatitative predictions of VLE for ordinary liquid mixtures and activity coefficients at infinite dilution. Several variations of UNIFAC model are reported by Oishi., Voutsas and Tassios, Gmengling et al., Zhang et al., Gupta and Danner and Hooper et al. 

In this study, we propose a group contribution model that can be used to predict solvent activities of polymer solutions. The proposed model is based on a modified double lattice model wherein the Helmohltz function of mixing includes the revised Flory- Huggins entropy contribution, the van der Waals energy contribution and the specific energy contribution. 

Theoretical Consideration

Mofdified Double Lattice Model
Primary Lattice

Helmohltz energy of mixing as the form of the Flory-Huggins theory is given by
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Here 
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are universal constants determined by comparing with Madden et al.’s Monte-Carlo simulation data.
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 is a reduced interaction energy parameter given by
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where 
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 are for the corresponding nearest neighbor segment - segment interactions.

Secondary Lattice

To improve the mathematical approximation defect and to reduce the number of parameters, a new Helmohltz energy of mixing as the fractional form is defined.   
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Where 
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is the Helmholtz energy of mixing of the secondary lattice for 
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is the reduced energy parameter contributed by the oriented interactions and 
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 is the surface fraction permitting oriented interactions.

Incorporation of secondary lattice into primary lattice

We assume the oriented interaction occurs in the 
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where 
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 are van der Waals energy interaction parameters. 

In a binary mixture, the activity of solvent 1 in polymer 2 is
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van der Waals Energy Contribution
For a pure component 
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 can be estimated using the square of the pure-component van der Waals solubility parameter of Hansen (Barton), which is the sum of a dispersion contribution and a polar contribution : 
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where 
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where 
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depends on temperature. The temperature –independent parameter 
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Cross interaction van der Waals energy parameter 
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Specific Energy Contribution

To obtain pure-component parameter 
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, we use Hansen’s hydrogen-bonding solubility parameter, 
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For the temperature dependence of 
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where 
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 is independent of temperature. From eqs.(11) and (12), we get
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For a pure component 
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Cross specific energy parameter 
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 is calculated from pair-interaction group parameters
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where 
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 are number of groups in solvents and polymers, respectively. 
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are volume fractions of group 
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 in a solvent and that of group 
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 in a polymer, respectively; 
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 are pair interaction parameters between group 
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 in a solvent and group 
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 in a polymer. To improve the accuracy of prediction, we assume that a functional group in a polymer is different from that in a solvent.

Results and Conclusion

We proposed a group-contribution model based on a modified double lattice theory. The proposed model has a simplified and improved expression for the Helmholtz energy of mixing for polymer/solvent systems that includes the combinatorial entropy contribution, the van der Waals energy contribution and the specific energy contribution. We showed several solvent activities of some binary polymer solutions comparing calculated curves with experimental results. Figure 1 shows a comparison with activities of PIB (Mw=1170)/pentane system at 298.15K calculated by Hu et al. with that of this work. Both models give fairly good agreement with experimental results. However, Hu et al.’ Model needs 18 model parameters and the proposed model requires only 6 parameters. In Figure 2, we can establish that the cross specific energy parameters are independent of temperature. Figure 3 shows predicted solvent activities of PS (MW=10920)/toluene systems at 321.65K. Figure 4 shows predicted solvent activities of PEO (MW=100000)/benzene system at 343. 15K. Figure 5 shows predicted solvent activities of PEO (MW=1460)/water system at 273.15K. Figure 6 shows predicted solvent activities of PE(MW=80000)/benzene system at 273.15K. The solid line is predicted by this work. This result is predicted by using only previously obtained pair interaction energy parameters. These parameters are not obtained by fitting experimental data. The ultimate goal of the group-contribution model lies in its ability to predict physical properties for systems which are not included in the experimental data, that is, the set of data uses to determine the parameters. The proposed model agrees still very well with the experimental data using previously obtained parameters. 
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Fig. 1 Solvent activities for the PIB (polyisobutylene, Mw=1170)/pentane


system at 298.15K. The solid line is calculated from this work. 


The dotted line is calculated from Hu et al. Open circles are experimental data 
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Fig. 6 Solvent activities for PE(polyethylene, Mw=80000)/benzene system at 273.15K. The solid line is calculated from this work. Open circles are experimental data
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Fig. 3 Solvent activities for PS (polystylene, Mw=10920)/toluene system 321.65K. The solid line is calculated from this work. Open circles are experimental data 








Fig. 2 Solvent activities for the PIB(polyisobutylene, Mw=1170)/pentane system


at 298.15K (a), 308.15K (b), and 318.15K (c).


The solid lines are calculated from this work. Open circles are experimental data 
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Fig. 4 Solvent activities for PEO (polyethylene, Mw=100000)/benzene system at 343.15K. The solid line is calculated from this work. Open circles are experimental data 
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Fig. 5 Solvent activities for PEO(polyethylene oxide, Mw=1460 )/water system at 273.15K. The solid line is calculated from this work. Open circles are experimental data 
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Fig. 5 Solvent activities for PEO(polyethylene oxide, Mw=1460)/water system at 273.15K.


The solid line is calculated from this work. Open circles are experimental data 
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