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1. Introduction

Partial Least Square (PLS) model is one of the most popular structural regression model for highly collinear and multivariate system analysis. Presented in biplots, PLS gives intuition to latent structure of input and output space. And the simple linear relationships of PLS structure gives a powerful tool for system analysis. But in some cases, simple linear inner relation of linear PLS model is not sufficient for prediction of nonlinear relation of  variables. For supplementation of PLS, various nonlinear PLS (NLPLS) models have been developed. For example, quadratic PLS, spline PLS, neural networks PLS, locally weighted regression (LWR) PLS and so on [1][2]. Although NLPLS model is useful in prediction of nonlinear system, the interpretability of NLPLS is not so good as the linear PLS model. LWR-PLS gives linear inner relation to latent variables, and it gives intuition to relation of variables in local space. But as the weight vectors of LWR-PLS are updated for each samples, the contribution of each variable to latent structures is not consistent in the global space

In this paper we propose a FNLPLS (Fuzzy nonlinear PLS) model, which combines strong points of Takagi-Sugeno-Kang (TSK) fuzzy and LWR model. This model is a kind of parametric regression model, and provides a powerful tool for modeling complex nonlinear systems. It enhances the interpretability of NLPLS and is strengthened by its learning algorithm comprising global and local learning. Moreover, it permits us to adjust its parameter according to the usage in terms of global fitting and local interpretation.

2. Theory

2.1. Partial Least Square model

PLS is a regression method that relates a set of predictor variables (predictor matrix is denoted X with the size of N ( J) to a set of response variables (response matrix is denoted Y with the size of N ( K). The index N, J, K represents the number of samples, the number of predictor variables and the number of response variables.

Standard linear PLS can be viewed as a 2-stage process. Initially, an outer model is used to decompose the X and Y blocks into scores (t, u), loadings (p, q) and weights (w), based on the projection:
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where E and F are the residuals of X and Y and m is the number of components used.

Next step is to find a fitting regression for scores. If inner relation between scores ua and ta is interpolated linearly i.e. ua = ba ta, it is called a linear PLS model. In our FNLPLS model, the inner relation is ua = f(ta) + ha , where f() is TSK Fuzzy type nonlinear function and ha is the residual.

2.2. TSK Fuzzy model

Typically, a TSK Fuzzy model consists of IF-THEN rules that have the form [3]



      Ri if x1 is Ai1 and ((( and xr is Air then 



  
yi = bi0 + bi1x1 + ((( + birxr for i = 1, 2, ((( ,L

(2)
where L is the number of rules, xi are input variables, yi are local output variables, Aij are fuzzy sets that are characterized by membership functions Aij(xj), and bij are real-valued parameters. The overall output of the model is computed by 
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(3)

where (I is the firing strength of rule Ri, which is defined as 
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(4)

In order to build the model, we partition the input space using the Gaussian-type fuzzy membership functions defined by 
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where x is the input vector ci is the center of Gaussian membership functions which is determined by Self-Organizing Map (SOM) algorithm [4] and the widths (i are determined using a nearest neighbor heuristic suggested in Moody and Darken [5], that is
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where ci (l = 1, 2, (((, p) are the p (typically p = 2) nearest neighbors of the center ci. In our experiment, p is the number of the nearest neuron of the center ci in SOM

2.3. Combined Learning algorithm

Combined learning algorithm in TSK Fuzzy model is first proposed by Yen et al.[3]. Combined learning aims at striking a good tradeoff between the global approximation and the local interpretation of TSK model. The objective function of global and local optimization is defined by
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where the notation of symbols is the same that of Yen et al. [3], except wi(n) in W. And the objective function of combined learning is
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where ( and ( are two positive constants satisfying
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They can be adjusted generating models with good tradeoff in terms of global fitting and local interpretation.

Yen et al. [3] proposed the local weighting matrix, W, as a combination of normalized firing strength, (i, defined in equation (5), but it has some shortcoming. The first is that each local model is affected by other rule, even at the center of the local model. The second is that whether the model becomes locally fitted or globally fitted is strongly affected by the width, (i of the Gaussian membership function. The third is that (i is affected by the distribution of the center of rules as well as the distance of each sample from the center ci. To overcome this shortcoming, we propose a modified cubic weight function which is generally used for the calculation of JL in LWR method. But the number of samples belonging to a rule is not deterministic as LWR method. It is decided by the number of samples that are located nearer to the center of the rule than that of other rules. The modified cubic weight function is , wi(n),
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where
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and Ci(n)is the index of the nearest center of the Gaussion memberships for each samples. 

2.4. FNLPLS algorithm

FNLPLS algorithm comprise two representative steps. First the linear combinations of predictors and of the responses (latent variables) are estimated the same way as in linear PLS. Second the nonlinear inner relation is calculated by TSK Fuzzy model. The calibration of inner relation model coefficients is performed using combined learning algorithm  

3. Experiment

The suggested method was applied to the process data obtained from the full-scale power plant of a steel mill plant in Korea. The electricity, which is need in a steel mill, has been generated by using fuel oil purchased and other off gases such as Coke Oven Gas (COG), Blast Furnace Gas (BFG) and Linz Donawitz Gas (LDG) generated in other plants. In this process, air pollutant such as SOx and NOx are generated, and they cause air pollution problems. We used the combustion process data set that consists of four inputs, that is COG, BFG, LDG and oil and two outputs, SOx and NOx, with total number of 417 samples. 

The steps of parameter calibration are as follow.

(1) Standardize the data to have zero mean and unit variance.

(2) The score vectors ua and ta are estimated by linear PLS. 

(3) Determine the number of the centers of Gaussian membership function and calculate the location of it by SOM algorithm.

(4) Determine the weighting on JG and JL, ( and (. 

(5) Calibrate FNLPLS model coefficients by combined learning algorithm.

(6) Calculate E and F as in linear PLS.

(7) Let E, F substitute for X, Y, then go to step (2) to calculate the next latent variable until the recycle number is equal to the number of latent variables.

4. Results

The score plot of t1 and u1 for FNLPLS is presented in Fig.1, Fig.2 and Fig3. Fig.1 is the result of global learning and Fig.2 is the result of local learning. The number of fuzzy rules used is 8. Fig.1 shows a good fitness of regression line but some of local linear regression lines are located far away from data points, and even the last local line at the right upper side is out of range of the figure. Fig.2 shows a good local fitness of local linear regression line, but the fitness of regression line of Fig.2 is not as good as that of Fig.1. Fig.3 is the result of combined learning when ( = ( = 0.5. Fig.4 shows SOx emission predicted by suggested FNLPLS algorithm when ( = ( = 0.5. The suggested FNPLS shows good predictability and easy interpretability.

5. Conclusion

We proposed FNLPLS model. Appling the model to a environmental data set, we illustrate the good nonlinear regression performance and interpretability of the proposed algorithm. FNLPLS model has a property of representing nonlinear multivariate system by linear subsystems. This property makes FNLPLS a good system analyzing tool.
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Fig 1. Score Plot of Global Learning         Fig 2. Score Plot of Local Learning
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Fig 3. Score Plot of Combined Learning     Fig 4. SOx prediction with one latent 

( when ( = ( = 0.5 )               variable by FNLPLS ( when ( = ( = 0.5 )
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