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Introduction

 Many engineering applications can be formulated as nonlinear function optimization problems 

in which the function to be optimized possesses many local minima in the parameter region 

of interest. In most cases, it is desired to find the local minimum at which the function takes 

its lowest value, i.e., the global optimum. Many a times gradient based schemes gets stuck in 

a local minimum point which is on the valley of attraction nearest to the starting point. To 

escape from a local minimum, methods of generalized descent which are classified as heuristic 

deterministic methods are used. They include the trajectory and penalty methods, such as the 

tunneling method. The tunneling method was initially developed for unconstrained problems  

and the basic idea is to execute the following two phases successively until some stopping 

criterion is satisfied. The minimization phase finds a local minimum point, and the tunneling 

phase determines another starting point for the local minimization phase with the cost function 

value smaller than or equal to the known local minimum value. For determining another 

starting point, DTM(dynamic tunneling method) and TRUST(terminal repeller unconstrained 

subenergy tunneling) are developed. However, finding a suitable point in the tunneling phase 

is also a global problem that is as hard as the original problem[2,3,4,6] . 

 In this paper, we propose new escaping method other than tunneling function. In escaping 

phase, cutting plane method and global line search algorithm are applied.

Proposed Algorithm

 The proposed algorithm can be decomposed into two phases. One is a local optimization 

phase(LOP) and the other is escape phase(EP). On the LOP, we use the conjugate gradient 

method. The reason we select this method is that the conjugate gradient method is reliable far 

from local optimum and accelerates as the sequence of iterates approached the optimum. 

Additionally, the conjugate direction method is evaluated completely by many authors since it 

was proposed. Because we use a gradient information, the objective function must be 

differentiable. We assume that we have a minimization problem. 

     min f(x i)

     s.t. : ai≤x i≤b i,  i=1,…,n

 Let x0i  be a starting point. From the starting point, x
0
i
, the conjugate gradient method will 

find any local optimum, xj( *)i
, f(xj( *)i )≤f(x

j
i). As we know, using local optimization method 

itself we cannot escape the local optimum. Therefore the EP is needed. On the EP, we solve 

the new problem which is composed by the following feasibility problem.

     Find x i ∈ F
*

     F * = : ꀅx i-x
j( *)
i ꀅ≥ε
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            f(x i) ≤ f(x
j( *)
i )

            ai≤x i≤b i,  i=1,…,n

 The feasible region, F *, is shown in Fig 1. Once we obtain the local optimum, xj( *)i
, we 

will determine epsilon so that xj( *)i
 is the unique optimum in the epsilon-neighborhood of 

x
j( *)
i
. If we can get xj+1i

, that  means we escape the local minimum, because xj+1i
 is 

located outside of epsilon-neighborhood of xj( *)i
. Note that xj+1i

 is not the local or global 

optimum but a new starting point. (To calculate a new starting point, in other word, to escape 

from a local optimum, a novel method based on the cutting plane method and the global line 

search algorithm is implemented.) At this point of time, we come back to the local 

optimization phase, then calculate another local optimum, xj+1( *)i
,  using xj+1i

 as a new 

starting point. These procedures continue until the condition of the termination criterion is 

satisfied. A simple flowchart which represents a whole procedure is shown in Fig 2.

 Since the feasible region , F *, which is formulated by given constraints is highly nonconvex 

and nonlinear, it is not easy to get a feasible point. As mentioned before, cutting plane 

method[7] and global line search algorithm[5] are applied to find a feasible point. For 

nonlinear objective function, the given problem can be reformulated as

     Min x 0

     s.t : gj(x i)≥0  i=1,...,N  j=1,...,J

          x (L)i ≤x i≤x
(U)
i  i=1,...,N

          x 0-f(x i)≥0   i=1,...,N

The bound for x 0 can be determined by interval analysis. The inequality constraints are 

imposed to subproblem after linearization using Taylor series. 

 As we see in flow chart and Fig. 1, this is a very simple and effective method to find the 

global optimum. In the following section, we evaluated this method by some examples. Thus 

general cutting plane can be written as

     p ( i)j (x;x
( i) )≡gj(x

( i) )+▽gj(x
( i) )(x-x ( i))

Let the first solution of LP in cutting plane method be xLPi . It is natural that this solution 

violates the constraints of the problem, because this solution is the one when all constraints 

are neglected. These constraints are 

     g(1)= ||x i-x
( *)
i || > ε

     g(2)= f(x ( *)i - f(x i)≥0

     ai≤x i≤b i,  i=1,...,N

At this time the cutting plane is made based on xLPi . The most violated constraint is 

linearized to be constructed as a cutting plane. Then this cutting plane cuts the search region 

and makes a new search region. During cut, the feasible region may be cut bet this is not a 

problem. The next step is global line search, a univariate DCEM(difference of convex envelop 

method), to find a feasible point. In first, to prepare global line search, the line which is 

perpendicular to the cutting plane and cross the xLPi  is made. The reason we make a 

perpendicular line to the cutting plane is that it is expected that this perpendicular line crosses 

much more feasible region than others. Then we calculate two points, a and b, which meet 
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the cutting plane and the boundaries of each variable. The objective function is reformulated 

as a one dimensional problem as follow.

     min
0≤α≤1

(
→
A
+ α ( →

B
-
→
A
) )

Here →
A
 and →

B
 are a vector which represents the point a and b. And α is a decision 

variable. To obtain α, the global line search is used. The detailed procedure is shown in Fig 

3 and Fig 4.

 The termination criterion in proposed algorithm is the following escape problem does not 

have any more feasible region.

Examples and Results

 We demonstrate the capability of proposed algorithm to find global solutions by solving 

some multidimensional nonlinear optimization problems. First, describe these problems, which 

widely used multimodal simple-bounded test functions with known optimal solutions. Then, we 

report the results of the proposed algorithm and compare the results with those obtained by 

several generalized descent algorithms.

Example 1) Six-hump camelback function (2-dimension)

     f(x 1,x 2)= (4-2.1x
2
1+

x41
3
)x21+x 1x 2+4(x

2
2-1)x 2

     -2≤x 1,x 2≤2

Example 2) Beal function (2-dimension)

     f(x 1,x 2)= (1.5-x 1+x 1x 2)
2+(2.25-x 1+x 1x

2
2)
2+(2.625-x 1+x 1x

3
2)
2

     -1.5≤x 1≤7.5, -4≤x 2≤5

Example 3) Schvefel function(Schw 3.1) (3-dimension)

     f(x)= ∑
3

i=1
( (x 1-x

2
i )
2+(x i-1)

2)

     -10≤x i≤10, i=1,2,3

Example 4) Powell function (4-dimension)

     f(x) = (x 1+10x 2)
2
+5(x 3-x 4)

2
+(x 2-2x 3)

4
+10(x 1-x 4)

4

     -4≤x i≤5, i=1,2,3,4

Example 5) Hartman NO. 6 (6-dimension)

 The results for the test problems are shown in Table 1. Also, we compared the number of 

function call with other generalized descent methods for only Ex 1 and the results are shown 

in Table 2. In the table, TM is tunneling method, DTM is dynamic tunneling method, and 

TRUST is Terminal repeller unconstrained subenergy tunneling[6].

Conclusion

 The new algorithm with the suggested escape phase is successfully applied to the general 

nonlinear problems of unconstrained global optimization. The proposed algorithm shows good 

performance to several standard test problems. In a view point of number of function calls, 

proposed algorithm reduces them by a factor of 10 to 100 when it is compared with interval 

branch and bound method. It is expected that when compared with other stochastic methods, 

the degree of reduction will increase. Also, the suggested algorithm performs better when it is 

applied to large size problems which have many independent variables.
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