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Introduction

Process data are used for yield accounting, operational planning, real-time optimization, advanced process
control, etc.. However, process measurements have random and gross errors and their errors must be removed for
the applications. The have been many research works about the estimation of multiple gross error magnitudes.
Three kinds of strategies have been developed for the estimation of gross error magnitudes: serial elimination[1],
serial compensation[2] and collective compensation. The collective compensation method gives the most
accurate estimation of gross errors. Keller ez al. [3] proposed the collective generalized likelihood ratio method
to estimate the gross error magnitudes. Sanchez et al. [4] estimated the sizes of gross errors simultaneously and
the results were very accurate. However, it is not suitable for large systems because the method is combinatorial.
Jiang and Bagajewicz [5] presented the algorithm for the collective estimation of multiple gross errors
magnitudes. Soderstrom ef al. [6] combined the data reconciliation problem with the gross error detection
problem using a mixed integer optimization technique. The previous works about the collective compensation
for the multiple gross errors were used all measurements as the candidates for the gross errors. Therefore, the
computation time may be very expensive and the methods for gross error estimation may not be applied to large
systems. In this paper, the simultaneous method to estimate multiple gross error magnitudes is proposed to apply
to large systems. Gross error candidates from measurement test are formulated as binary variables to confirm
their existence and estimate the magnitudes in the mixed integer nonlinear programming so that the estimation
problem of gross error magnitudes be computationally inexpensive.

Multiple Gross Error Estimation Algorithm

The algorithm for the simultaneous estimation of the multiple gross error magnitudes and the reconciled
estimates is composed of two steps: the first step is to identify the location of the multiple gross errors and the
second step is to estimate the gross error magnitudes and the reconciled values.

1% step

In the first step of the proposed algorithm, the candidates of the gross errors are identified by measurement test,
nodal test, etc.. The identified gross errors are formulated as integer variables to confirm their existence and
estimate their magnitudes in the second step.

2" step
The model for the flow measurements and gross errors can be given by
y=x+¢+0 3)

where y is the vector of measurements, x the vector of true value, € the vector of random errors and &
the vector of gross errors. The constraint residuals, r, can be expressed as
r=Ay=Ax+As+Ad )

where A is the constraint matrix. The simultaneous estimation of the gross error magnitudes and the
reconciled value is the solution of minimization problem given by

min Ay~ Asf s o} +wTB ®)
subject to
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Ax=0 (6)
|6 <UBy (7)
|6¢| = e,U, B, (®)
%20 ©)

B, € Binary (10)

where V is the covariance matrix of constraint residuals, X the covariance matrix of measurements. U is
chosen as arbitrary large value that can be considered as the upper limit on the bias magnitudes. The value of
B, must be fixed as zero if the measurement or nodal test in the first step does not identify as gross errors. The
values of e, must be chosen such that the values of ¢, U, is some times of standard deviation of the
measurements.

Example Case Study

Figure 1 shows the flow network for example case study. All measurements are assumed to be measured and Table 1 shows
the true values and biases of each stream. For the simulation study for the estimation of gross errors, the location of biases are
fixed at streams 2, 3 and 5. The sign of biases is chosen randomly and the magnitudes of biases are given to be less than 10%
of true values. The random errors for measurements are also introduced.

Table 1. True values for the measured flow rates

Stream x1 X2 x3 x4 x5 x6 | x7 | x8 | x9

True value 100 | 130 | 180 | 150 | 100 | 30 | 50 | 40 | 60
Measurement 100.5]118.3]195.2|151.5]|110.4]29.9(49.9]|40.1|59.7
Standard deviation 2.64 | 3.32 | 485 | 3.29 | 2.41 [0.71]1.26|1.06 | 1.28

Bias 0 -12 15 0 10 0 0 0 0

In the first step, the location of multiple gross errors is identified by measurement test. The measurement test gives the
location of gross errors at streams 2, 3 and 5. In the second step, the streams 2, 3 and 5 are formulated as integer variables in
the second step to estimate the sizes of the gross errors, which gives MINLP formulation.

Table 2. The results of bias estimation
Stream x1 x2 x3 x4 x5 x6 |x7 [x8 |x9
Reconciled value 100.4 | 130.4 | 180.6 | 150.6 | 100.4 | 30.0 | 50.1 | 40.2 | 60.1
Bias estimation 0.0 -12.5|14.1 0.0 9.7 0.0 |00 |00 |0.0

The estimation results of multiple gross errors are shown in Table 2. The location of multiple gross errors are identified
exactly and the sizes multiple gross errors are estimated with the accuracy of 10%.
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Figure 1. Flow network for example case study

Table 3 shows the results of gross error estimation by the method of Soderstrom et al. [6]. All of the measured variables are
formulated as the gross error candidates. The gross errors are introduced to streams 2, 3 and 5. However, the gross errors are
identified in streams 2, 5 and 6 and the size of gross error in stream 2 is not correct. The sets of gross errors in the loop of
streams 2, 3 and 6 are equivalent. Two sets of gross errors are equivalent when they have the same effect on the value of
objective function in data reconciliation[7]. The set of gross errors in streams 2 and 3 is equivalent to the set of gross errors in
streams 3 and 6 or streams 2 and 6.

Table 3. The results of bias estimation

Stream x1 x2 x3 x4 x5 x6 x7 x8 x9
Reconciled value 100.2 | 145.1 | 1952 [150.4 [100.2 |44.8 50.2 |40.2 [60.0
Bias estimation 0 -26.7 |0 0 10.1 -14.8 |0 0 0

Industrial Case Study

1. Process description

Figures 2(a) and 2(b) show the flow network of by-product gases in the iron and steel making plant for this study. Iron and
steel making plants consume much energy, whose sources can be purchased in form of LNG, coal, heavy oil and electricity,
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and can be by-product gases. Four kinds of by-product gases are generated such as blast furnace gas (BFG), COREX furnace
gas (CFG), coke oven gas (COG) and Linze Donawitz gas (LDG).

Figure 2(a) shows the flow networks for BFG, CFG and LDG. Solid line shows the BFG flow, dotted line CFG flow and
dash-dotted line LDG flow. BFG is by-produced in blast furnaces and consumed in coke plants and power plants. The
remaining BFG is pressurized and then mixed with COG and LDG. CFG is by-produced in COREX furnace and is consumed
in power plants. The remaining amount is mixed with BFG directly. LDG is by-produced in steel making plants. LDG
generated in the first steel making plant is consumed in the first and second power plants. However, LDG generated in the
second steel making plant is pressurized and then consumed in low-pressure boiler or mix with BFG and COG.

Figure 2(b) shows the schematic diagram of COG distribution flow. COG is by-produced in coke oven and consumed in
furnaces, power plants, chemical plants, steel making plants etc.. The remaining COG is pressurized and mixed with BFG
and LDG. The mixed gas is consumed in the plate rolling mills, wire rod rolling mills and hot strip mills.

2. Results and Discussion

The proposed method is applied to process network of by-product gases in the iron and steel making processes. The daily-
averaged data of byproduct gases are used for the gross error estimation and data reconciliation. In the first step,
gross error candidates are identified by measurement test. To identify the multiple gross errors by the
measurement test, data reconciliation must be implemented to calculate the adjustment of each measurement.
The adjustment of each measurement is tested whether or not it follows the normal distribution. Table 4 shows
the test results for gross error locations for byproduct gas distributions networks. The gross errors are identified
in the second LDG generation unit, the CFG generation unit, the entire COG generation units with 95%
confidence. In general, a flow meter for large flow rate is not accurate than that for small flow rate. Any gross
error is not detected in the measurements of consumption units, whose flows are smaller than the generation
units. Nodal test can also be used to identify the location of gross errors. However, the nodal test identifies the
gross errors node by node so that the number of integer in the second step formulation can be increased. The
identified measurements are formulated as integer variables in the second step to estimate the sizes of gross
erTors.

Table 5 shows the reconciled estimates of each measurement and the amount of byproduct generation is
balanced with the amount of byproduct consumption. Table 6 shows the estimated gross error magnitudes. All of
the identified gross errors in the first step are confirmed to have gross errors and their sizes are estimated. The
estimated gross errors can be used for yield accounting, operational enhancement, etc..

Conclusion

The two step method to estimate the gross error sizes is proposed and the results are compared with the previous
works. The method is also applied to the network for byproduct gas distribution in the iron and steel making
process. The previous work estimates the sizes of gross errors but the results are not exact to the introduced gross
error sizes and locations in example case study. The proposed method identifies and estimates the sizes of
multiple gross errors with 10% accuracy in the example case study. The algorithm is also applied to the
industrial processes and detect, identified and estimated the multiple gross errors. The reconciled measurement
by the proposed method may be useful for yield accounting, test of operational improvement and energy saving
because it gives balanced flow rates for byproduct gases such as BFG, LDG, COG and CFG. .
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Figure 2(a). Flow network for BFG, CFG and LDG

Table 4. The results of gross error identification

Figure 2(b). Flow network for COG

Sorearo -6 {CFe 1C0G Table 5 is the estimation result of the gross error candidates

NO 1 —0775 | 0761 4541

NO 2 -0414 | 2.872 4.609 detected from the first step.

NO 3 -1729 4.713

NO 4 —1562 2.531 BFG |G |cra |coG

NFBE —0487 Production

COREX _ i NO 1 2470 | 235 62.7

Consumption NO 2 1305 |  88.1 63.7

1 BF 0224 —0248 |1 BY-PRO | —0080 NO 3 551 5 65 1

2 BF 0108 -0138 |2 BY-PRO | -0108 NO 4 4949 350

3 BF 0484 ~0741 |3 BY-PRO | —0049 NFBE 154 1

4 BF 0487 0571 {(WMT. -0012 COREX 120.5

NFBF 0.162 —-0078 |1 SINT -0.007 TOTAL 1577.7 | 111.6 [ 120.5 [ 226.4

COREX -0053 {2 SINT -0038 Consumption

1 COKE 0.362 -0.393 |3 SINT -0.090 1 BF 68.1 4.0 {1 BY-PRO| 1.3 i{S-2SMP 0.9

2 COKE 0.306 —-0200 | —0.366 {4 SINT -0.059 2 BF 33.1 2.2 i2 BY-PRO 1.7

3 COKE 0319 -0208 | -0385 |F SINT -0011 3BF 145.2 12.2 13 BY-PRO| 0.8

4 COKE 0152 -0099 | -0210 |1 CDQ -0016 4 BF 146.1 9.3 WMT. 0.2

2CDQ -0010 NFBF 49.6 1.3 |1 SINT 0.1

1 HSM 0037 | 0000 -1271 |OLC -0023 COREX 0.8 12 SINT 0.6

2 HSM 0000 | 0000 0000 |STS_M ~0001 1 COKE 109.3 6.4 13 SINT 1.4

1PM -0263 |PCI -0018 2 COKE 92.7 98| 59 4SINT 0.9

2PM 0011 | —0071 -0555 |1 BOF -0.069 3 COKE 96.6 10.3 6.2 {F SINT 0.2

2 NMZ —0219 {2 BOF —0145 4 COKE 46.5 4.9 3.4 i1 CDQ 0.2

3PM 0008 | —0053 -0415 {1 CCP -0.040 2 CbQ 0.2

BLTM 0005 | —0034 -0267 {2 CCP -0022 1 HSM 11.4 0.0 21.4 .0LC 0.4

1 WRM 0004 | -0027 -0214 |3 CCP -0017 2 HSM 0.0 0.0 0.0 STS_M 0.0

2 WRM 0005 | —0.001 -0217 |4 CCP -0033 1P.M 4.2 PCl 0.3

3 WRM 0007 | —0002 -0311 |1 BCCP -0007 2P.M 3.4 2.4 9.0 1 BOF 1.1

ESM -0267 |2 BCCP -0013 2 NMZ 3.5 2 BOF 2.3

cT/B -0879 -0322 |LIME 1447 3P.M 254 18 6.7 1.CCP 0.6

1P/P 0560 | -0568 ~0.123 |1C-PL 0000 | [BLTM 164 12 4.3 2.CCP 0.4
1 WRM 1.3 0.9 3.4 13 CCP 0.3

2P/P 0187 | —0433 -0034 |1C-BCAL | —0229 > WRM s 00 35T cer os

3P/P 0692 | —0645 -1107 |2 CRM -0248 3 WRM o 01 o1 Becp o3

4P/P 0701 | ~0570 ~1054 |S-1SMP 0034 ESM : : 312 BecP 02

5P/P 0207 ~1043 | -0328 |S-1APL -0288 B 299 =5 LIME on's

6 P/P 0209 ~0895 | ~0306 |H2 -0241 TP 698 To3 20 TPl oo

S—20MP 00571 [2pp 573 | 147 0.5 1C-BCAL | 3.7

3P/P 205.2 | 21.9 18.5 2 CRM 4.0
4P/p 207.6 | 19.4 17.6 |S-1SMP 0.0
5P/P 63.0 51.4| 5.3 S-1APL 4.6
6P/P 63.8 441 49w 3.9
TOTAL 1577.7] 111.6 | 1205 226.4

Table 6. The estimated magnitudes of gross errors

#2 LDG CFG #1 COG #2 COG #3 COG #4 COG
Estimated | g 50112 13.5501 7.2354| 7.344746 7.51021917 4.0331
gross error
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