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1. Introduction
Artificial Neural Networks(ANNs) have been widely applied to many fields of science and engineering 
due to their ability to describe any nonlinear dynamics between process inputs and process outputs. It 
is notable that most previous neural network dynamic models are for the discrete-time processes. There 
are some reasons why discrete-time approaches are more popular than continuous-time approaches. First, 
the mathematics for discrete-time approaches is easier than that of continuous-time approaches. The 
stochastic theories of discrete-time approaches are much simpler than those of continuous-time 
approaches. Also, time derivatives of the process output and process input should be calculated in 
continuous-time approaches, which makes continuous-time approaches complicated. Second, if our main 
purposes are only to design controllers, it is not important to estimate physical parameters of 
continuous-time physical models. For these reasons, discrete-time approaches have been recognized more 
efficient than continuous-time approaches2-4. However, it has been proven that discrete-time approaches 
have serious disadvantages for several situations. First, when we estimate physical parameters, 
continuous-time approaches are definitely preferred. Second, when we deal with a process input of a 
physical signal such as temperature, pressure and level, continuous-time approaches should be used since 
it is a continuous-time signal rather than a discrete-time signal. Third, discrete-time approaches cannot 
escape numerical ill-conditions for a small sampling time and the modeling errors increase inversely 
proportional to a sampling time for a certain type of noise2-4. In this context, we propose a 
continuous-time recurrent neural network(CRNN) to overcome the disadvantages of the previous 
discrete-time neural networks. It is organized as follows. Section 2 presents the framework of CRNN 
and we derive the training rule of CRNN. Section 3 compares the performance of the proposed CRNN 
with that of previous neural networks from real data of micro-PCR reactor. Section 4 concludes this 
research.

2. Continuous-time Recurrent Neural Network
In this section, we propose a framework for continuous-time recurrent neural network model and derive 
the supervisory training rule of the proposed CRNN.

2.1 Framework of continuous-time recurrent neural network
The framework of SISO CRNN is shown in Figure 1. The input layer is composed of the state and 
the input and there is one hidden layer. The output layer consists of the first order time derivative of 
the state and the model output. The model state can be calculated from the first order derivatives of 
the state through the Euler integration method, which goes back to the input nodes for the next time 
calculation. Because of the above features, we call this model continuous-time recurrent neural network. 
The number of input nodes is equal to that of output nodes. If the dimension of the state is n , the 
number of the input nodes becomes n+1 . 

2.2 Training rule of continuous-time recurrent neural network
In this research, the backpropagation with the generalized delta rule is used to train the weights. The 
goal of the supervisory learning algorithm is to minimize the average squared error between the values 
of the measured process output and the model output as follows. 
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The objective function to be minimized for training CRNN is as follows.

E=0.5 (y( t)-ym(t) )
2 (1)

subject to

z p(t)= ∑
n

q= 1
Vp, qX q(t)+Vp,n+ 1u(t) (2)

hp(t)= f (z p(t) ) where, f(x)= 1

1+ e- x
 (logistic sigmoid function) (3)

ym(t)= ∑
m

p= 1
Wn+ 1, ph p(t) (4)

dX q( t)

dt
= ∑

m

p= 1
Wq, ph p(t)

(5)

Xq(t+Δt)=Xq(t)+ ∑
m

p=1
Wqph p(t)Δt       (5-1)

where, y( t), ym(t) and u( t) denote the process output, the model output and the process input, 

respectively. X∈Rn denotes the n-dimensional state. W   and V  represent the output weight matrix 
and the input weight matrix. n  and m  are the number of states and the number of hidden nodes.   
hp(t) is the output of p-th hidden node.

From (1)-(5), the following equations with respect to W  can be derived.

∂E
∂Wkj

=-(y( t)-ym(t) )
∂ym(t)

∂Wkj
(6)

∂ym(t)

∂Wkj
=h j (t) for   k= n+1       (7-1)

        = ∑
m

p= 1
Wn+ 1, p

∂h p(t)

∂Wkj
for   k=1,2,⋅⋅⋅,n       (7-2)

The following  three equations are for k=1,2,⋅⋅⋅,n
∂h p(t)

∂Wkj
=hp (t) (1-h p(t) )

∂z p(t)

∂Wkj
(8)

∂z p(t)

∂Wkj
= ∑

n

q=1
Vpq

∂Xq(t)

∂Wkj
(9)

∂Xq(t+Δ t)

∂Wkj
=
∂Xq(t)

∂Wkj
+(h j(t)+ ∑

m

p=1
Wqp

∂h p(t)

∂Wkj )Δt for   k= q      (10-1)

              =
∂Xq(t)

∂Wkj
+ ∑

m

p=1
Wqp

∂h p(t)

∂Wkj
Δt for   k≠q      (10-2)

From the above equations, the weight W  can be updated as follows.

W kj
t+1
= W kj

t
-η

∂E
∂Wkj | W kj

t

   

   (11)

Also, we can derive the following equations with respect to V .

∂E
∂Vji

=-(y( t)-ym(t) )
∂ym(t)

∂Vji
      (12)
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∂ym( t)

∂V ji
= ∑

m

p= 1
Wn+ 1, p

∂h p(t)

∂V ji
      (13)

∂h p(t)

∂Vji
=hp (t) (1-h p(t) )

∂z p(t)

∂Vji
      (14)

The above three equations are for k=1,2,⋅⋅⋅,n+1 .
∂z p(t)

∂Vji
= ∑

n

q=1
Vpq

∂Xq(t)

∂Vji
+Xi(t) for   i=1,2,⋅⋅⋅,n  and  p= j   

(15-1)
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Vpq
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for   i=1,2,⋅⋅⋅,n  and  p≠j    

(15-2)

        = ∑
n

q=1
Vpq

∂Xq(t)

∂Vji
+u( t) for   i= n+1  and  p= j      (15-3)

        = ∑
n

q=1
Vpq

∂Xq(t)

∂Vji
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∂Xq(t+Δt)

∂Vji
=
∂Xq(t)
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+ ∑

m

p=1
Wqp

∂h p(t)

∂Vji
Δt for   i=1,2,⋅⋅⋅,n+1       (16)

From the above equations, the weight V  can be updated as follows.

V ji
t+1= V ji

t-η
∂E
∂Vji | V ji

t

   

   (17)

3. Experimental Study
In this paper, the micro-PCR (Polymerase Chain Reaction) reactor is considered. We identified the PCR 
process in order to compare the model performances of a previous discrete-time ANN and those of 
CRNN. The process input is the square root of voltage, and the process output is the temperature of 
the chamber in the micro-PCR reactor. Figure 2 shows the process input and the process output, where 
the sampling time is 0.055sec. Each model structure is shown in Figure 3. Figure 4 and Table 1 show 
the model performances for each approach. The solid line and the dot line in Figure 4 denote the 
process output and the model output respectively. The performance of the discrete-time NN is very 
poor, while that of CRNN is very excellent.
Table 1. Conditions and result of simulation

Input node Hidden node Output node η Average squared error

Discrete-time NN 4 10 1 0.0001 0.00330

CRNN 3 5 3 0.0001 0.00009

4. Conclusion
We have developed the continuous-time recurrent neural network (CRNN) which is able to identify 
efficiently continuous-time processes. The training rule for CRNN is derived, which uses the 
backprogagation method with the generalized delta rule to update the weights. In order to demonstrate 
the performance of CRNN and compare CRNN with discrete-time NN, we carried out experiments with 
a micro-PCR reactor. The performance of CRNN is much better than that of the discrete-time NN 
when the sampling time is small.
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Figure 1. Framework of CRNN 

    

Figure 2. Output and input data for training

Figure 3. Frameworks: (a) discrete-time NN, (b) CRNN

Figure 4. Model performances: (a) discrete-time NN, (b) CRNN


