용융탄산염 연료전지 개질기/연소기 시스템 모사

<u>홍재민</u>, 이상득^{*}, 양대륙 고려대학교 화공생명공학과, 한국과학기술연구원^{*}

Reformer/Combustor Simulation of Molten Carbonate Fuel Cell System

Jae Min Hong, Sang Deuk Lee^{*}, Dae Ryook Yang Dept. of Chemical & Biological Engineering, Korea University, KIST^{*}

<u>서론</u>

연료전지는 무공해, 높은 발전효율과 폐열 이용 등으로 전체 에너지 효율의 향상을 도모할 수 있 어 기존의 수력, 화력, 원자력에 이어 제 4세대 발전 기술로서 기대대고 있다. 특히 노후 화력 발 전소의 대체 및 지역 발전용으로 예상되는 용융 탄산염 연료전지는 선진국에서도 이제 막 상용화 를 위해 준비중인 단계이므로 우리나라에서도 많은 연구가 필요하다.

연료전지 발전 시스템을 구성하기 위해서는 전기를 생산하는 연료전지 본체와 연료인 천연가스, 메탄올, 석탄가스등을 수소로 개질하여 수소가 많은 연료가스로 만드는 개질기, 발전된 직류전기 를 교류로 변환시키는 직교류 변환기 및 제어장치 그리고 배열이용 시스템 등이 필요하다. 이중 개질기는 연료전지의 종류, 사용처에 따라 요구되는 개질기의 사양이 달라지게 되며 개질기의 효 율은 연료전지 본체의 효율에 커다란 영향을 미치게 된다.

본 연구에서는 용융 탄산염 연료전지 시스템의 개질 시스템으로 평판형 개질기를 모사하였으며 모멘텀에 대한 식을 고려하여 기존의 가스의 선속도와 압력을 가정하였던 것과 달리 압력강하를 고려하였고 개질기 본체와 연소기의 상호 관계도 고려하였다.

본론

개질 공정은 촉매 고정층 반응기에 원료가스를 넣어주고 외부에서 열을 가해주는 공정이다. 반응 기 안의 온도가 700K 이상의 고온을 유지해야 하기 때문에 많은 양의 에너지가 연소기를 통하여 공급되어야 하는 공정이다.

개질 시스템은 크게 개질기와 연소기의 두 부분으로 나눌 수 있다.

반응기는 전체 길이는 20cm이고 폭은 25cm, 높이 1.5cm의 개질기 단위셀 5단과 높이 2.0cm의 연소 기 6단이 적층되어있는 형태이고 연소기 쪽에는 높이 0.5cm의 연료가 들어가는 채널이 있으며 이 를 통해 연소기 전체로 균일하게 연료를 공급하게 된다. 개질 촉매로는 Ni계 촉매가 사용되었으며 연소 촉매로는 Pd계 촉매가 사용되었다. 개질기의 원료로는 CH4, H2O가 사용되었고 H2O/CH4의 원 료비는 3.17로 하였으며 연소기의 연료로는 연료전지 스택의 anode output을 재순환하여 사용하였 다. 개질기의 개질가스와 연소기의 연소가스는 counter-current로 흐르며 열교환을 한다.

그림 1 평판형 개질기 실험장치

화학공학의 이론과 응용 제8권 제2호 2002년

 1. 반응식

 (1) 개질기 반응

 개질반응 : CH₄+H₂O ↔ 3H₂+CO (⊿H₁=206kJ/mol)

 전환반응 : CO + H₂O ↔ H₂+CO₂ (⊿H₂=-41kJ/mol)

 (2) 연소기 반응

 H₂+ 1/2 O₂ ↔ H₂O (∠H₃=-241.818kJ/mol)

 CO + 1/2 O₂ ↔ CO₂ (∠H₄=-110.525kJ/mol)

2. 수학적 모델

(1) 가정

반응기는 길이방향으로만 변화가 있으며 가스의 점도는 무시할 수 있다고 생각하였고, 연소기에 들어가는 연료는 모든 지점에 균일하게 들어가며 반응속도는 연소반응이므로 매우 빠르고 완전연 소하여 반응속도를 고려하지 않아도 된다고 생각하였다.

(2) Equation of Continuity

$$\begin{split} \frac{\partial C_{CH_{1}}}{\partial t} &= -\frac{\partial (vC_{CH_{1}})}{\partial z} - \frac{1-\varepsilon}{\varepsilon} \rho_{cat} r_{1} \\ \frac{\partial C_{H_{2}O}}{\partial t} &= -\frac{\partial (vC_{H_{2}O})}{\partial z} - \frac{1-\varepsilon}{\varepsilon} \rho_{cat} (r_{1}+r_{2}) \\ \frac{\partial C_{H_{2}}}{\partial t} &= -\frac{\partial (vC_{H_{2}})}{\partial z} + \frac{1-\varepsilon}{\varepsilon} \rho_{cat} (3r_{1}+r_{2}) \\ \frac{\partial C_{CO}}{\partial t} &= -\frac{\partial (vC_{CO})}{\partial z} + \frac{1-\varepsilon}{\varepsilon} \rho_{cat} (r_{1}-r_{2}) \\ \frac{\partial C_{CO_{2}}}{\partial t} &= -\frac{\partial (vC_{CO_{2}})}{\partial z} + \frac{1-\varepsilon}{\varepsilon} \rho_{cat} v r_{2} \\ \cdot \dot{\mathfrak{E}} r_{2} \\ \cdot \dot{\mathfrak{E}} r_{1} \\ \frac{\partial C_{CO_{2}}}{\partial t} &= -\frac{\partial (vC_{CO_{2}})}{\partial z} + \frac{F_{fuel}}{LA} (a_{1}+a_{2}) \frac{\partial C_{CO_{2}}}{\partial t} = -\frac{\partial (vC_{CO_{2}})}{\partial z} - \frac{F_{fuel}}{LA} \frac{(a_{1}+a_{2})}{2} \\ \frac{\partial Cc_{CO_{2}}}{\partial t} &= -\frac{\partial (vC_{CO_{2}})}{\partial z} + \frac{F_{fuel}}{LA} (a_{3}+a_{4}) \\ \frac{\partial Cc_{N_{2}}}{\partial t} &= -\frac{\partial (vC_{CO_{2}})}{\partial z} + \frac{F_{fuel}}{LA} (a_{3}+a_{4}) \\ \frac{\partial Cc_{N_{2}}}{\partial t} &= -\frac{\partial (vC_{CO_{2}})}{\partial z} \\ \frac{\partial Cc_{N_{2}}}{\partial t} &= -\frac{\partial (vC_{CO_{2}})}{\partial z} + \frac{F_{fuel}}{LA} (a_{3}+a_{4}) \\ \frac{\partial Cc_{N_{2}}}{\partial t} &= -\frac{\partial (vC_{CO_{2}})}{\partial z} \\ \frac{\partial Cv_{N_{2}}}{\partial t} &= -\frac{\partial (vC_{N_{2}})}{\partial z} \\ \frac{\partial Cv_{N_{2}}}{\partial t} &= -\frac{\partial (vC_{N_{2}}}{\partial t} \\ \frac{\partial Cv_{N_{2}}}{\partial t} \\ \frac{\partial Cv_{N_{2}}}{\partial t} &= -\frac{\partial (vC_{N_{2}}}{\partial t} \\ \frac{\partial Cv_{N_{2}}}{\partial t} \\ \frac{\partial Cv_{N_{2}}}{\partial t} &= -\frac{\partial (vC_{N_{2}}}{\partial t} \\ \frac{\partial Cv_{N_{2}}}{\partial t} \\ \frac{\partial Cv_{N_{2}}}{\partial$$

v : 가스 속도(cm/s) r₁/r₂ : 개질/전환 반응 속도 a₁/a₂/a₃/a₄ : 연소기로 들어가는 연료가스중 H₂O/H₂/CO/CO₂의 몰분율 (3) Equation of Energy

$$\frac{\partial E}{\partial t} = -\frac{\partial (vE)}{\partial z} - (1-\varepsilon)\rho_{cat}(\Delta H_1r_1 + \Delta H_2r_2) + \frac{KW}{A}(T_c - T) - Q_{loss}$$

화학공학의 이론과 응용 제8권 제2호 2002년

 $\frac{\partial E_c}{\partial t} = -\frac{\partial (vE_c)}{\partial z} - (1-\varepsilon) \left(\Delta H_3 a_2 + \Delta H_4 a_3 \right) \frac{F_{fuel}}{LA} - \frac{KW}{A} (T_c - T)$ E_i/E_{ci} : 개질기/연소기 단위부피당 에너지(KJ/cm) W : 반응기 폭(cm) T_i/T_{ci} : 개질기/연소기 가스 온도(K) Q_{loss} : 외부로의 열손실 (4) Equation of State

$$\rho = \frac{PM_{W}}{RT} \qquad \qquad \rho_{c} = \frac{P_{c}M_{Wc}}{RT_{c}}$$

p/pc : 개질기/연소기 가스 밀도(g/cm)P/Pc : 개질기/연소기 압력(比a)Mw/Mwc : 개질/연소 가스 평균분자량R : 기체상수(5) Equation of Motion

$$\rho \frac{\partial v}{\partial t} = -\rho v \frac{\partial v}{\partial z} - \frac{\partial P}{\partial z} \qquad \rho_c \frac{\partial v_c}{\partial t} = -\rho_c v_c \frac{\partial v_c}{\partial z} - \frac{\partial P_c}{\partial z}$$
$$\frac{\partial P}{\partial z} = -1.75 \frac{\rho v^2}{d_p} \frac{(1-\varepsilon)}{\varepsilon^3} \qquad \frac{\partial P_c}{\partial z} = -1.75 \frac{\rho_c v_c^2}{d_{pc}} \frac{(1-\varepsilon)}{\varepsilon^3}$$
$$\frac{\partial P_c}{\partial z} = -1.75 \frac{\rho_c v_c^2}{d_{pc}} \frac{(1-\varepsilon)}{\varepsilon^3}$$

그림 2 Reformer/Combustor steady-sate profile

<u>결론</u>

개질기 원료의 초기 온도는 900K로 하였고 압력은 3기압으로 하였을 때의 steady-state profile이다.

흡열반응인 개질 반응은 반응기 입구에서 격렬히 일어나므로 반응기 입구에서는 개질기 가스의 온도가 떨어지며 연소기에서 계속해서 열이 공급되므로 개질기 가스의 온도는 점점 올라가고 counter-current로 흐르는 연소기 가스의 초기 입구의 온도가 높지 않으므로 개질 가스의 출구 근처 에서 다시 온도가 약간 떨어지게 되는 것을 알 수 있다.

향후계획

시스템에서 외부로의 열손실을 고려하여 시스템의 unsteady-state를 계산하고 실험을 통한 검증을 해야한다.

참고문헌

1. He, W. and Kas Hemmes, Fuel Processing Technol., 67, 61 (2000).

2. Hou, Kaihu and R. Hughes, Chem. Eng. J., 82, 311 (2001)