이온교환된 제올라이트흡착제의 질소흡착 특성연구

<u>서정욱</u>, 김의식, 정헌도^{*}, 김권일^{*} 충북대학교 공과대학 화학공학과, 한국에너지 기술연구원^{*}

A Study on an adsorption characterization of nitorgen in ion exchanged zeolite absorbent

Jeong-wook Seo, Euk-sik kim, Heon-Do Jeong*, Kweon-Ill Kim* Dept. of Chem. Eng. Chungbuk National univ. Korea Institute of Energy Reserch.

<u>1.Introduction</u>

Zeolite X형은 이온교환에 의해 세공의 크기를 7~10Å 사이로 조절할 수 있기 때문에 화합물들이 서로 혼합되어 있는 경우에 여러 가지 이성질체를 분리하는데 유용하게 사용 된다. 이러한 흡착 분리에 있어서 각 성분에 대한 선택도는 이온교환된 양이온의 종류나 교환양에 따라서 크게 달라질 수 있다.

Ca-이온교환된 zeolite를 이용한 흡착 분리는 PSA(pressure swing adsorption)공정을 이용 한 산소 제조에서 산업적으로 다양하게 사용되어왔다. Li-이온교환된 zeolite(X with Si/Al=1.0)은 높은 질소 수용능력과 질소/산소 선택성이 일반적인 Zeolite X(Si/Al =1.2~1.3) 보다 뛰어나기 때문에 Li-이온교환된 zeolite는 산소제조 PSA의 산업적인 사용에서 가장 좋은 흡착제로 고려되어진다.

Satoshi Yoshida[1]는 Li-이온교환된 제올라이트를 가지고 180K~313K사이에서 각 온도 에서 압력 변화에 따른 흡착능의 차이를 실험했다. 그 결과 0~2.0kPa 범위에서 273k~313k의 각 온도별 흡착량의 변화는 거의 평행하게 나타났으며 181~245k 사이의 온 도범위에서는 흡착량의 변화가 크게 나타났다.

본 연구에서는 Li-이온교환된 zeolite의 질소 선택흡착력에서 영향을 주는 Li⁺ 이온의 이 온교환율에 영향을 주는 Li⁺이온을 다양한 농도에 따라서 교환하여 기체 분리용 zeolite 흡착제의 성능에 미치는 영향을 규명하고자 한다.

2. Theoreticial Consideration

Zeolite 결정에서 산소원자와 배위결합하는 aluminum 원자는 전하가 +1만큼 부족하여 결정구조가 중성을 나타내기위하여 금속성 이온이 결합하고 있다. 이러한 금속성이온은 다른 양이온과 교환될 수 있으며, 양이온의 종류에 따라서 이온교환의 선택성을 나타나게 된다. zeolite의 양이온교환은 양이온의 종류, 크기 및 전하량과 이온교환온도, 양이온의 농도, 용액에서 양이온에 영향을 주는 음이온의 종류, 용액의 특성 및 zeolite 구조적 특성 에 영향을 받는다.

Figure 1은 5가지 100% Li 이온교환된 zeolite의 양이온의 위치(I, I', II, III and III')를 나타낸다. Plevert et al.[2] 은 300K에서 의 cubic LiX는 I', II, III, III' 위치에서 32개의 Li 이온이 존재하고 그리고 10K에서 orthorhombic LiX는 I' 위치에서 32의 Li 이온, II, II' 위 치에서 21개의 Li 이온 그리고 III, III' 위치에서 43개의 Li 이온이 존재함을 발표했다.

NaX형 zeolite에서는 3가지 양이온의 위치(I, II, III)가 중요하다. 즉 I, hexagonal prism 중심에 위치하여 unit cell당 32개가 있다. II 부위는 결합되지 않은 6원 환원 고리에 위치 하며 unit cell당 32개가 있다. III 부위에서는 Channel 벽에 있는 부위로 unit cell당 48개가

있다.

3. Results and Discussion

3.1. Zeolite Synthesis

50ℓ 대용량 반응기에서 최적의 zeolite powder를 제조하기 위하여 Al₂O₃, SiO₂, NaOH, H₂O를 각각 일정한 비율로 교반한후에 숙성시간에 따른 zolite의 특성을 알아보기 위하여 교반직후, 24h, 48h, 72h 숙성을 하여 50L 반응기 98℃에서 24시간 반응하였다. 또한 반응 온도에 따른 zeolite의 특성을 알아보기 위해서는 72시간 숙성시킨 zeolite를 93℃, 95℃, 98℃, 101℃에서 24시간 반응을을 하였고, 물의 양에 따른 제올라이트의 변화를 알아보기 위하여 물의 양을 각각 비율로 첨가하여 제올라이트의 결정구조를 분석 하였다. 반응이 끝난 후 증류수로 수세하여 필터링을 한 후 80℃에서 건조하였다. 만들어진 zeolite powder를 BET측정하여 surface area의 차이를 분석하였고 물의 양에 따른 결정구조를 분 석하기 해서 XRD로 제조된 zeolite powder의 구조를 분를 분석하였다.

Figure 2. measurement of surface area on difference aging time(a) and temperature(b)

숙성시간에 따른 zeolite합성 표면적 변화는 Figure 2-(a)에서 나타나듯이 처음 24시간 사 이에서 높은 증가를 보이다가 24시간 이후에는 거의 표면적의 증가가 거의 나타나지 않 고 있다. 온도에 따른 변화에서는 95℃까지 zeolite의 표면적이 매우 적게 나타나나 98℃ 이후에는 표면적이 크게 나타났다. 그러나 온도에 따른 변화에서 XED를 측정하여 zeolite 의 구조를 분석한 결과를 보면 Figure 3에서 나타나듯이 93℃와 95℃에서 제조된 zeolite의 경우에는 20가 5.88에서 intensity가 333과 6.02에서 401을 나타내고 있어 이 온도에서 제 조된 zeolite는 완전한 결정 구조를 가지지 못한 것으로 나타났다. 98℃ 와 101℃에서 만 들어진 zeolite는 20가 6.08에서 intensity가 1013과 1273을 나타내어 X형태를 가지고 있음 을 나타내내고 있다.

Figure 3. XED patterns of zeolite on different temperatures

3.2 Ion exchange experiments

CaCl₂ 와 LiCl 용액을 이용한 이온교환은 위의 과정에서 제조한 BET 781㎡/g의 zeolite powder를 사용하였다. LiCl 용액을 이용한 이온교환은 각각 0.5, 1.0, 1.5, 2.0, 2.5, 3.0N의 비율로 1L 용액을 만든 후 100g의 제올라이트를 넣어 80℃에서 24시간 동안 교반하면서 가열 처리하였다. 이를 수세 한 후에 필터링 한 후 80℃에서 건조하여 흡착시료로 사용하 였다. CaCl₂용액을 이용한 이온교환도 위와 같은 방법으로 이온교환 하였다. ICP를 이용 하여 Ca²⁺ 이온과 Li⁺ 이온의 이온교환율을 측정하였고, CaCl₂ 와 LiCl 3N 농도로 이온교 환한 CaX 와 LiX, 그리고 제조된 zeolite(NaX)를 Cahn을 이용 각각의 질소 흡착량과 산소 흡착량을 측정하였다.

Figure 4. analysis of ICP on ion exchange rate using difference CaCl2 & LiCl solution

몰농도의 변화에 따른 Ca²⁺ 와 Li⁺ 이온의 이온교환율을 ICP로 분석한 결과 Figure 4.에 서 나타나듯이 Ca²⁺ 이온은 0.5N의 낮은 농도에서 90%가 넘는 높은 이온교환율을 보이며 CaCl₂ 용액의 농도가 증가하여도 이온교환율의 증가가 더 이상 증가하지 않음을 보여주 고 있다. Li⁺ 이온의 이온교환율은 처음 0.5N에서 2N 사이에 높은 증가율을 보이다 점차 그 증가 폭이 줄어든 모습을 보이고 있다.

Ca²⁺ 와 Li⁺ 이온교환된 zeolite의 질소와 산소 흡착량을 Cahn을 이용해 분석한결과는 Figure 5.에서 나타나고 있다. 질소 흡착량은 zeolite가 질소와 산소의 압력이 증가함에 따 라서 흡착량이 증가하고 있음을 나타내고 있고, 이온교환된 zeolite의 이온에 따른 흡착량 은 질소 흡착량은 LiX>CaX>NaX 순서로, 산소 흡착량은 CaX>LiX>NaX 순서로 나타낸다. 질소의 흡착이 압력이 증가함에 증폭이 감소하는 곡선을 이루는 반면에 산소의 흡착량은 압력이 증가하에 따라서 그래프의 곡선이 증가하고 있다.

Figure 5. measurement nitrogen and oxygen on difference ion-exchanged zeolite by Cahn

4. Conclusions

높은 표면적을 가지는 zeolite를 대형 반응기에서 제조하기위해서는 온도의 조절이 중요하다. 소형 반응기에서 X형 zeolite를 제조할 때 98℃에서 높은 표면적의 zeolite를 제조할 수 있었던 것에 비하여 50ℓ반응기에서는 98℃에서는 그다지 높은 표면적을 기 대할 수가 없었다. 그러나 101℃로 조절된 반응기에서는 실험에서 원했던 정도의 높은 표면적을 얻을 수 있었다. 이것은 반응기의 크기에 따라서 적절한 온도의 조절이 필요 하다는 것을 나타낸다.

이온교환에 따른 질소, 산소 흡착량의 실험에서는 Ca²⁺로 이온 교환된 zeolite가 높은 이온교환율에도 불구하고 Li⁺ 이온 교환된 zeolite보다 적은 질소 흡착량과 많은 산소 흡착량 특성을 가지고 있는 것으로 나타나는 것으로 볼 때 LiX가 CaX 보다 높은 질소 흡착 선택성을 지니는 것으로 나타난다.

references

- 1. Satoshi Yoshida. Shigeru Hirano. Microporous and Mesoporous Materials 46 (2001) 203-209
- 2. J. Plevert, F. Di Renzo, F Fajula, G. Chiari, Phys. Chem. B 101 (1997) 10340
- 3. M. J. Jin & K. I. Kim. J. of Korean Ind & Eng. chemistry, Vol. 9 No. 3 June. 1998
- 4. S. K. Moon, Hwahak Konghak vol. 27 No. 4 August, pp 422-429 (journal of the Korean Institute of Chemical Engineering)
- 5. Kenneth Sing. Collids and Surfaces. Physicochemical and Engineering Aspects 187-188 (2001) 3-9
- 6. K. Yamada. Sur face Science 507-501 (2002) 207-212]