Autothermal reforming of iso-octane for hydrogen production over Ni/CeO₂-Al₂O₃ catalysts

<u>최상옥</u>, 문상흡* 서울대학교 (shmoon@surf.snu.ac.kr*)

The performance of Ni/CeO₂-Al₂O₃ catalysts in gasoline autothermal reforming (ATR) for hydrogen production was investigated. The catalysts were prepared by modifying Al₂O₃ with different amounts of CeO₂, followed by Ni impregnation, and were used for ATR using as a model compound representing gasoline. Reaction tests were conducted using a feed stream of H₂O/C/O = 3/3/0.25 at 600 °C for 24 h, which caused the severe deactivation of catalyst by coke formation. In the case of Ni/CeO₂-Al₂O₃, 92% conversion was maintained during the test period of 24 h. Hydrogen production was larger for Ni/CeO₂-Al₂O₃ than for Ni/Al₂O₃. The results of Temperature-programmed reduction indicated that CeO₂ addition promoted the reduction of NiO and prevented the formation of NiAl₂O₄ in the catalysts. The elemental analysis and temperature-programmed oxidation of deactivated catalysts showed that Ni/CeO₂-Al₂O₃ produced less amounts and different types of coke on the catalyst surface. Consequently, the CeO₂ modification leads to an increase in H₂ production and coke resistance due to enhancement in NiO reduction and coke gasfication.