Hydrogen production with sulfur deprivation in the culture of Chlamydomonas reinhardtii

<u>김준표</u>, 심상준* 성균관대학교 (simsj@skku.edu*)

It is widely known that a technology of hydrogen production using green algae can simultaneously overcome both problems of energy and environment. We performed study of hydrogen production using the green algal *Chlamydomonas reinhardtii* in the sulfur deprivation condition. To produce hydrogen by the green algae is required hydrogenase activation. But hydrogenase having severe O_2 sensitivity are inactivated by photosynthetic O_2 evolution. This problem can overcome to separate between the simultaneous photosynthetic O_2 and H_2 gas evolution (two-stage) by the sulfur deprivation in medium. Two-stage process was performed photosynthetic O_2 evolution and carbon accumulation (stage 1), followed by H_2 evolution consuming endogenous substrate when the green algae are incubated under anaerobic condition(stage 2). After 30 hours of sulfur deprivation, the O_2 evolution rate by photosynthesis fell below the O_2 uptake rate by respiration. In addition, we investigated effect of induction parameters such as cell density, cell growth stage, and light intensity on hydrogen productivity in *C. reinhardtii*.