The Adsorbent Size Effect on the Mercury Capture by In situ Generated Titania

현정은, 이태규*, 민병렬, 배귀남¹, 정종수¹ 연세대학교;
¹한국과학기술연구원 대기자원연구센터 (teddy.lee@yonsei.ac.kr*)

Titania particles are prepared by gas phase reaction through the quartz reactor. The characteristics of titania particles prepared by different conditions is analyzed by transmission electron microscopy (TEM) and x-ray diffraction (XRD). The geometric mean particle diameter ($d_{Sub}g$) is measured by scanning mobility particle sizer (SMPS) with nano-differential mobility analyzer (nano-DMA). TEM image analysis is to evaluate the properties of agglomerates, such as fractal dimension ($D_{Sub}f$), primary particle size, and the radius of gyration ($R_{Sub}g$). Experiments were performed to investigate the mercury removal efficiencies for primary furnace temperature (500-1000 Sup oC). Titania particles in the presence of UV irradiation chemisorbed mercury on titania surface area. With increasing in primary furnace temperature, the mercury capture efficiencies are increased from 7.6 to 77.6%. This is probably because with increasing in primary furnace temperature, the structure of titania particles is more opened, and the effective surface area is increased.