Sung Won Kim*, Gorkem Kirbas, Hsiaotao Bi, C. Jim Lim. John R. Grace University of British Columbia (kswcfb@lgchem.com*)

Flow behavior, structures and flow regime were determined in a circulating fluidized bed riser (0.203 m i.d.×5.9 m high) of FCC particles (d_p = 70 μ m, ρ_s = 1700 kg/m³). A momentum probe was used to measure radial momentum flux profiles and to distinguish between local net upward and downward flow regions. Time-mean dynamic pressure decreases towards the wall and, the fast fluidization flow regime was observed to coexist with dense suspension upflow (DSU) in the range U_g = 5-8 m/s, G_s = 10-340 kg/m²s. The annular downflow layer disappears locally with increasing solids mass flux (Gs) at a constant Ug, with achievement of the DSU regime. New correlations are developed to predict the thickness of solids down-flowing layer based on solids mass flux and momentum flux. They account for the effect of height on the thickness, and cover high G_s ranges near the onset of the DSU regime. Also, a new flow regime map is proposed distinguishing the fast fluidization, DSU and dilute pneumatic transport flow regimes.