Electrochemical internal reforming of Carbon dioxide by Methane in SOFC System

<u>박종민</u>, 문동주*¹, 류종우¹, 강동민, 남석우¹, 이상득¹ 고려대학교; ¹한국과학기술연구원 (djmoon@kist.re.kr*)

The CO_2 catalytic reforming by CH_4 is an attractive conversion technology because of the possibility of enhancing natural gas utilization with the sequestration of CO_2 . However this reaction has two serious problems such as the high energy consuming process and catalyst deactivation. To improve these problems, the electrocatalytic reforming of CO_2 with CH_4 was carried out in the SOFC system using electrochemical cells. Ni–YSZ-ceria based anode materials were prepared by precipitation method or physical mixing, and the electrochemical cells were manufactured by a tape casting method. The catalysts before and after the reaction were characterized by XRD, N_2 Physisorption, SEM and TPD. It was found that $\mathrm{Ni}_{0.6}\mathrm{YSZ}_{0.4}\mathrm{CeO}_2$ | YSZ | (LaSr)MnO $_3$ cell showed higher conversion than the other electrocatalytic cells under tested conditions.