Gas phase oxidation of 1,2-dichlorobenzene on V2O5/TiO2 and MnO1/TiO2 aerogel catalysts

<u>최진순</u>*, 김 철¹, 서동진², 박태진² 아주대학교 청정기술연구센터; ¹아주대학교 화학공학과; 2한국과학기술연구원 청정기술연구센터 (choijinsoon@hotmail.com*)

The gas phase oxidation of 1,2-dichlorobenzene(DCB) was performed in the presence of 20% of oxygen and 80% of nitrogen on titania supported vanadia and manganesia aerogel catalysts prepared by sol-gel method and supercritical drying. The reaction was conducted in a fixed bed reactor with a residence time of less than 0.02 seconds in the range of 150-600°C. V₂O_F/TiO₂ and MnO₃/TiO₂ catalysts showed not only a destruction efficiency of more than 99% at above 500°C, but also no deactivation after 24 hours reaction. Moreover, different from other metal oxide such as chromia, no volatile chlorinated metal oxides were produced. The major products of CO and CO2 were also monitored during the reaction to compare the actual efficiency of total oxidation. V_2O_5/TiO_2 showed higher destructive activity at lower temperatures and on the other hand MnO_x/TiO₂ showed better performance for complete oxidation. The highest activities were obtained at 10% loadings of both V₂O₅ and MnO_x.