The Promotive Effect of Metal Ions on the Photo-Catalytic Degradation of Phenol by TiO₂

<u>김동수</u>*, 노현숙, 신명숙, 권영식¹ 이화여자대학교 환경학과; ¹수원과학대학 (dongsu@ewha.ac.kr*)

The effects of additive metal ions on photo-catalytic oxidation of phenol in aqueous solution was studied on a bench scale using TiO_2 and UV as the PCO system. It was considered that ferric ion ($\mathrm{Fe^{3+}}$) and ceric ion ($\mathrm{Ce^{4+}}$) could increase the efficiency of degradation of phenol in PCO reaction, only if $\mathrm{Fe^{3+}}$ and $\mathrm{Ce^{4+}}$, as electron acceptors, could prevent the recombination of hole-electron in the surface of TiO_2 . From the quantitative investigation, it was found that ferric ion increased the efficiency of degradation of aqueous phenol during PCO reaction, with concentration range of [$\mathrm{Fe^{3+}}$] = 0.1 $^{\sim}$ 0.3 mM. Especially, in case of 0.2 mM of ferric ion, the reaction time for the complete destruction of aqueous phenol decreased to 1/3 of the control case (i.e. 150 min \rightarrow 50 min). However, ceric ion ($\mathrm{Ce^{4+}}$) was rarely effective with concentration range of [$\mathrm{Ce^{4+}}$] = 0.02 mM, but, still showed the possibility of electron acceptors.