

<u>이태규</u>*, 윤우석, 김영미, 김동형 (주)나노팩 (tklee@nano-pac.com*)

Efficient hydrogen evolution was photocatalytically achieved by combining CdS with potassium niobate semiconductors, KNbO₃ and Ni(II)-doped KNbO₃, under visible light (l>400nm) irradiation in a mixed isopropanol/water system. The quantum yields, f, for H₂ production with visible light were found to be 4.7% and 0.58% for CdS:NiKNbO₃ and CdS: KNbO₃, respectively. 203mmole/hr·g of H₂ production rate under (UV+ visible) irradiation(UVis) for CdS:NiKNbO₃ was almost two times higher than that under visible light only, while CdS:KNbO₃ under Uvis produced H₂ 1.2 times higher than 20.1mmole/hr·g under visible only. The large enhancement in activity due to Ni(II) doping is attributed to substitution of Ni²⁺ for K⁺¹ site of K⁺¹Nb⁺⁵O₃, which induces a slight modification of the basic crystal structure, resulting in enhancement of charge separation and thus higher probabilities of electron transfer to bound protons.

Acknowledgement ; We are grateful to the Hydrogen Energy R&D Center of the 21st Century Frontier Research and Development Program of the Ministry of Science and Technology of Korea for financial support.