Decomposition of NH₃ over Zn-Al-based desulfurization sorbent promoted with various additives

<u>정석용</u>, 김재창*, 이수재, 이태진¹, 류청걸² 경북대학교 화학공학과; ¹영남대학교; ²한전전력연구원 (kjchang@mail.knuac.kr*)

To investigate the simultaneously removal of H_2S and NH_3 , Zn–Al–based sorbents promoted a transition metal such as with cobalt, nickel, and molybdenum additive were prepared by impregnation and co–precipitation method and the decomposition of NH_3 was studied in a micro–reactor at 1 atm and 650°C. The NH_3 did not affect the sulfur removing capacity of Zn–Al–based sorbent. The additive like cobalt, nickel and molybdenum, was found to be an active component in the NH_3 decomposition as well as H_2S absorption, while the major components such as ZnO and Al_2O_3 did not show any activity in the NH_3 decomposition reaction. The NH_3 was decomposed over both oxide and sulfide forms of the additives, even though the NH_3 decomposition on the sulfide form of an additive dramatically decreased in the presence of excess H_2 . In the case of oxide form, cobalt and molybdenum oxide showed an excellent NH_3 decomposition capacity regardless of H_2 concentration, while the capacity of nickel oxide depended on the H_2 concentration.