Effects of Thermo-Solutal Convection during the Crystal Growth Processes of Mercurous Chloride (Hg₂Cl₂)

<u>이대수*</u> 한남대학교 (1979prince@naver.com*)

The effects of convection on the crystal growth rates of mercurous chloride ($\mathrm{Hg_2Cl_2}$) are investigated for convective–diffusive conditions and purely diffusion conditions achievable in low gravity environments under a nonlinear thermal profile. For $4~\mathrm{f}~M_B~\mathrm{f}~472.086$, the solute driven convection (solutal Grashof number $Gr_s=1.72~\mathrm{x}~10^5$) due to the disparity in the molecular weights of the component A ($\mathrm{Hg_2Cl_2}$) and B (argon:Ar) is stronger than the thermally–driven convection (thermal Grashof number $Gr_t=1.05~\mathrm{x}~10^4$), for an aspect ratio (transport length–to–width) of 5, total pressure of 35,455 Pascal, Pr=0.667, Le=0.47, Pe=3.57, $C_v=1.029$. With the temperature humps, there were found to be in undersaturations along the transport path for convective–diffusive processes ranging from $D_{AB}=0.0584~\mathrm{cm}^2/\mathrm{s}$ to 0.584 cm²/s, in axial positions from 0 to 7.5 cm. The diffusion mode is predominant over convection for gravity levels less than 0.1 g_0 for the horizontally–oriented configuration.