Synthesis of conjugated polymer - mesoporous TiO₂ nanocomposite particle and thin film

<u>장광석</u>, 양희만, 김종득* 한국과학기술원 생명화학공학과 (jdkim@kaist.ac.kr*)

Synthesis of conjugated polymer– TiO_2 nanocomposites has been attracted for their useful applications in optoelectronic devices, such as solar cells, electrochromic devices, light–emitting diodes, and charge–storage devices, which make a heterojunction between organic and inorganic semiconductors where charge transfer occurs. In this study, we propose a new method to obtain a porous nanocomposite of conjugated polymer and TiO_2 by a direct polymerization of conjugated polymer in the mother solution of mesoporous TiO_2 .

We prepared two types of nanocomposites, core-shell nanoparticles of polymethineimine and mesoporous TiO_2 , and nano-sized polypyrrole embedded mesoporous TiO_2 thin film. Core-shell nanoparticles of polymethineimine and mesoporous TiO_2 were synthesized using TiCl_4 as a catalyst for the polymerization of polymethineimine and as a precursor of TiO_2 . And nano-sized polypyrrole embedded mesoporous TiO_2 thin films were synthesized using sonochemical polymerization of pyrrole in the mother solution of mesoporous TiO_2 thin film.