Removal of High Concentrated NH₃ on the Dielectric Barrier Discharge (DBD) Plasma– Photocatalytic Hybrid System with V–TiO₂

<u>반지영</u>, 손연희, 전민규, 강미숙¹, 정석진* 경희대학교 환경응용화학대학; ¹경희대학교 산학협력기술연구원 (sjchoung@khu.ac.kr*)

In this study, we have focused on the Advance Oxidation Process (AOP) of NH_3 a species of odoured inorganic compounds in a plasma-photocatalytic hybrid system and investigated the mechanism for the AOP of NH_3 . In order to the optimum condition for the oxidation of NH_3 with plasma system was carried out reaction at the applied voltage of 5, 7 and 10 kV. Also, the reaction mechanism and catalytic cycle for the AOP of NH_3 has been elucidated by in situ FT-IR studies under steady-state conditions. It is found that the optimum condition was at the applied voltage of 10kV and the catalytic activity was better than that loaded vanadium amount of 5mol%. In the plasma only system, the activity of the NH_3 oxidation was similar to that in the photocatalytic system could be provided the better effect for NH_3 decomposition compared with only photo or plasma systems.