The H₂ production from the hexadecane partial oxidation on Rh-loading catalysts

<u>조자경</u>, 김철민, 김준우, 김동진, 강미숙¹, 정석진* 경희대학교 환경응용화학대학; ¹경희대학교 산학협력기술연구원 (sjchoung@khu.ac.kr*)

The diesel engine has a good fuel economy and high durability. However, the emission of NO_x is plenty, resulted in the occurrence of air pollution. So NO_x removal is presently receiving considerable research attention. In recent reviews, the synthesis gas and olefins produced from the diesel fuel partial oxidation devices were directly injected into a de-NO_x catalyst system. Therefore in this study, we have an attempt to produce the synthesis gas by a partial oxidation of hexadecane over Rh catalysts. The partial oxidation efficiency increased with an increase of reaction temperature untill 800°C; The best conversion of hexadecane was obtained at above 700°C and the best selectivities of CO and H₂ were exhibited at 800°C on all catalysts. Particularly, partial oxidation of hexadecane was improved in the order of Al₂O₃ < Rh/Al₂O₃ < Ce-Zr-LaO_x. Rh-Ce-Zr-LaO_x. In addition, The best selectivity of H₂ and CO was showed in Rh-Ce-Zr-LaO_x. From this result, we have confirmed that the Rh component with spillover hydrogen property is effective to obtain H₂ from hexadecane.