Carbon Dioxide Separations through FAU Zeolite Membranes with Diverse membrane thickness and Si/Al ratio

<u>김호수</u>*, 조철희¹, 안영수¹, 한문희¹, 김용하 부경대학교 화학공학과; ¹한국에너지기술연구원 기능소재센터 (kim-ho-soo@hanmail.net*)

Faujasite zeolite membranes with diverse membrane thicknesses (1–20µm) and Si/Al ratio (1.3–1.8) were prepared by hydrothermally treating a porous α -alumina tube in Al₂O₃-SiO₂-Na₂O aqueous solutions and the CO₂/N₂ separation property(separation factor and flux) was evaluated in a He sweeping mode for an equimolar binary gas. The CO₂ flux is slightly dependent on the membrane thickness, Si/Al ratio and permeation temperature, while the CO₂ flux is highly affected by them. The CO₂/N₂ separation factor showed a maximum in ones with a membrane thickness of around 5µm and abruptly decreased with increasing permeation temperature. The prepared faujasite zeolite membranes showed an excellent CO₂/N₂ separation behavior: at a permeation temperature of 30°C, they showed the CO₂/N₂ separation factor of 30 to 90 and the CO₂ flux of 2 x 10⁻² to 5 x 10⁻² mol/m²sec. In the present study, it was emphasized that a retardation of N₂ flux through the micropores is necessary to improve the CO₂/N₂ separation factor at room temperature or elevated temperatures.