Development regenerable MgO based sorbent promoted with Cobalt and Iron oxide for SO_x removal

<u>이수재</u>, 정석용, 이태진¹, 류청걸², 김재창* 경북대학교; ¹영남대학교; ²한국전력연구원 (kjchang@knu.ac.kr*)

Sulfur oxides (SO_x) can be formed by oxidation of sulfur in fossil fuel and emitted from the industrial processes such as a catalyst regeneration unit of RFCC and FCC. In this study, the MgO-based sorbents promoted with Co and Fe were tested for the removal of SO_x and their abilities of SO_2 absorption as well as regeneration were investigated in a Fixed-bed under RFCC and FCC conditions (sulfation of MgO to MgSO $_4$ in the presence of low concentration of SOx at 700° C, regeneration of MgSO $_4$ to MgO and H_2S in the presence of H_2 at 530° C). The promoter, Cobalt played an important role in oxidation SO_2 into SO_3 which could be easily absorbed to the MgO and Iron improved the regeneration property of the sorbent. It was also found that the sulfur removing capacity and regeneration property of the MgO based sorbents promoted simultaneously with Co and Fe depended on the preparation method(coprecipitaion, physical mixing and impregnation method). The sorbent prepared by impregnation of Fe to the Co-MgO prepared by coprecipitiaon of Co and MgO showed the excellent sulfur removing capacity and regeneration property. Characterization of sorbnets promoted with Co and Fe were discussed by the results of FT-IR, XRF, BET.