Effect of CO/SO₂ on oxidation of NO over Pt based catalysts for Hybrid Fast SCR Process

Irfan Muhammad Faisal, <u>구정회</u>, 김상돈* 한국과학기술원 (kimsd@kaist.ac.kr*)

The effects of O_2 , NO and NO_2 concentrations on oxidation of NO over platinum catalysts on different supports have been determined. The activity order for NO oxidation reaction is found to be $Pt/WO_3/TiO_2 > Pt/TiO_2$ anatase $> Pt/TiO_2$ rutile $> Pt/Al_2O_3$. Comparing the anatase catalyst containing WO_3 and anatase itself, the catalyst containing WO_3 exhibits the highest activity since WO_3 acts as a promoter. The oxidation conversion of NO to NO_2 increases with increasing oxygen concentration from 3 to 10%, but it levels off at higher concentrations. The conversion to NO_2 decreases with increasing NO concentration and also it decreases by an addition of NO_2 to the feed. From these observations, it can be claimed that oxidation of NO over Pt based catalysts is auto-inhibited by the reaction product of NO_2 . Further experiments were performed for oxidation of CO and SO_2 and to determine their effects on NO oxidation. The NO conversion slightly decreases with increasing SO_2 concentration over the anatase catalysts but the conversion is affected more by SO_2 over the rutile catalyst. Moreover, the presence of CO provides remarkably high conversion of NO over all the catalysts tested. The NO conversion exhibits a maximum value with variation of CO concentration.