A Combinatorial Approach to the Discovery of New Meso(Nano)porous and Nanoparticulate Materials

<u>백성현</u>*, Thomas F. Jaramillo¹, Alan Kleiman-Shwarsctein¹, Eric W. McFarland¹ 인하대학교 화학공학과; ¹Department of chemical Engineering, University of California Santa Barbara (shbaeck@inha.ac.kr*)

Automated systems for electrochemical synthesis and high throughput screening of catalytic materials were developed and used to prepare a library of nanoparticulate materials and mesoporous materials. Nanoparticulate materials such as Pt, Au, and WO_3 , were synthesized by combinatorial pulsed electrodeposition method and mesoporous WO_3 films were successfully synthesized by electrodeposition method using SDS (sodium dodecyl sulfate) as a templating agent.

A library of nanoparticulate gold supported on TiO_2 was synthesized and characterized by automated systems for electrochemical synthesis and high throughput screening of catalytic materials. Nanoparticulate tungsten oxide films were also synthesized by pulsed electrodeposition. Particle sizes between 25 and 330 nm were achieved.

Mesoporous WO_3 films with a lamella structure have been synthesized by electrodeposition using sodium dodecyl sulfate (SDS) as a templating agent. Compared to non-porous WO_3 prepared with isopropanol instead of SDS, lamella phase mesoporous WO_3 showed higher photocatalytic activity and greater current density for hydrogen intercalation.