Thermal stability of supported-ZnO catalysts for Reverse-Water-Gas-Shift Reaction (RWGSR)

정성훈, 박영권, 주오심¹, 정광덕^{1,*} 서울시립대학교 환경공학과; ¹한국과학기술연구원 나노환경연구센터 (ikdcat@kist.re.kr*)

Reverse–Water–Gas–Shift Reaction (RWGSR) was carried out over the ZnO, Al_2O_3 , and ZnO/Al_2O_3 catalysts at the temperature range from 400 to 700° C. The ZnO showed good specific reaction activity but this catalyst was deactivated. All the catalysts except the ZnO/Al_2O_3 catalyst(850° C) showed low stability for the RWGSR and was deactivated at the reaction temperature of 600° C. The ZnO/Al_2O_3 catalyst calcined at 850° C was stable during 210 hrs under the reaction conditions of 600° C and $150,000^{\circ}$ GHSV, showing CO selectivity of 100° 6 even at the pressure of 5 atm. The high stability of the ZnO/Al_2O_3 6 catalyst (850° C) was attributed to the prevention of ZnO7 reduction by the formation of $ZnAl_2O_4$ 7 phase in the ZnO/Al_2O_3 6 catalyst calcined at 850° C was confirmed by XRD and electron diffraction.