Enhancement of Photocatalytic Activity between Carbon – coated Titanium Oxide

<u>김태원</u>, 이민주, 이대행¹, 문 희* 전남대학교; ¹광주광역시보건환경연구원 (hmoon@chonnam.ac.kr*)

Nowadays carbon-coated TiO_2 is attracting material for the improvement of photocatalytic acitivity due to its high adsorbability and crystallinity of antase type TiO_2 . In this work, the carbon-coated TiO_2 , was prepared from following ways i) a powder mixture of TiO_2 (P-25, Degussa) with polymers and ii) directly preparation from hydrolysis of titanium tetraisopropoxide (TTIP) with an aqueous solution of polymers under 500°C to 900°C temperature. The amount of carbon contents on TiO_2 particles was controlled by changing the ratio and concentration of polymers. The transformations of rutile from anatase was suppressed up to 800°C with a carbon contents above 5%, meanwhile the phase transformation of anatase to rutile was observed at above 600°C in the case of parent TiO_2 . The adsorption studies of two commercial dyes (methylene blue and black5) indicated that carbon-coated TiO_2 has a high adsorption capacity compared to that of P-25. In addition, photodecomposition of reactive dyes on carbon-coated TiO_2 was highly dependent on carbon contents, particle size and heating temperature.