Photocatalytic properties and electronic structure of Ca₂Nb₂O₇ layered perovskite material

<u>김현규</u>^{1,*}, 홍태은¹, 박혁규^{1,2}, 정의덕¹, 김해진³, 지상민⁴, 배상원⁴, 홍석준⁴, 장점석⁴, 이재성⁴ ¹한국기초과학지원연구원 부산센터; ²부산대학교 물리학과; ³한국기초과학지원연구원 미래융합연구실; ⁴포항공과대학교 화학공학과 (hhgkim@kbsi.re.kr*)

Among various methods of solar energy conversion, much attention has been paid to the photocatalytic water splitting for its potential significance in obtaining directly clean and high energy containing H2 from abundant H_2O . The perovskite materials such as $SrTiO_3$ and $CaTiO_3$ have photocatalytic activities for water splitting under UV light irradiation. However, the quantum yields are very low (ca. <1%). Thus there is need to explore the photocatalytic properties of newer materials.

In this paper, we report the photocatalytic properties of highly donor-doped (110) layered perovskite material, $Ca_2Nb_2O_7$, along with its electronic band structure calculations. We further discuss the experimental and theoretical results in light of the photocatalysis. The photocatalytic and electronic properties indicate $Ca_2Nb_2O_7$ to be a better photocatalyst than conventional or other known candidates viz. TiO₂, SrTiO₃, BaTiO₃.