CdSe/ZnS 나노입자을 이용한 유무기 하이브리드 소자의 전계발광

<u>박관휘</u>, 유홍정, 김성현^{*} 고려대학교 화공생명공학과 (kimsh@korea.ac.kr^{*})

Electroluminescence of Organic/Inorganic Hybrid Device using CdSe/ZnS Nanoparticles

<u>Kwanhwi Park</u>, Hong Jeong Yu, Sung Hyun Kim^{*} Department of Chemical & Biological Engineering, Korea University (kimsh@korea.ac.kr^{*})

서론

나노미터의 크기를 가지는 금속 반도체 화합물은 그 물리화학적인 성질과 광전자 성 질이 기존의 마이크로미터 크기의 입자와는 전혀 다른 특성을 보인다[1]. 지난 수년 동안 반도체화합물의 이러한 성질로 인하여 반도체화합물에 관한 연구가 관심을 끌고 있다.[2] 최근 들어서 나노 반도체 화합물에 대한 관심으로 화합물의 성장 메카니즘 규명[3] 뿐 아 니라 반도체화합물의 성질을 이용한 분자회로, 광전소자 및 센서 등에 응용하려는 연구가 진행되고 있다. [4] CdSe,[5] CdS[6]나 CdTe[7], 그리고 ZnS[8] 같은 II-VI족 화합물은 벌크일 경우 에너지 갭이 근적외선 영역에 해당하나, 크기가 작아짐에 따라 에너지 갭의 증가와 양자효과로 인해 가시광선 영역의 에너지 갭을 갖는 것으로 알려져 있어 가시광 선 영역의 광소자의 소재로 사용될 수 있다.

분자형태의 전구체에 의한 합성은 결정성이 우수한 특징을 가지고, 용매에 의해 보호 막 효과(passivation)를 얻을 수 있는 장점이 있다. 하지만 고온의 합성조건에서 나노입자 를 합성할 경우에 형성된 나노입자가 성장을 계속하는 경향이 강하므로 고온의 실험에서 나노입자를 합성할 경우 용매와 나노입자의 배위결합을 통해서 입자의 성장 및 합착에 의한 크기의 증가를 막아 줄 필요가 있다. 이런 특성을 고려하여 II-VI 족 반도체 나노입 자의 분자형태의 전구체에 의한 방법에서 주로 사용되는 용매는 TOPO로 화학적/ 열적 안정성이 우수하며, 입자 표면의 금속부분과 결합하지만 새로운 용매를 이용하여 다른 물 질로 치환이 가능하다. 그리고 합성과정에서 합성온도 및 시간을 조절하여 입자의 크기를 조절할 수 있다고, 긴 사슬(octyl chain)을 가지고 있어 소수성의 표면을 가지는 나노입자 를 합성하며, 입자들 간을 분산도가 우수하다.

본 연구에는 TOPD/TOP가 코팅된 CdSe/ZnS 나노입자를 고온 및 진공 조건에서 합성 한 후 이를 이용하여 발광소자를 제조하여 발광특성을 알아본다. 이를 위해서 발광소자의 구성요소인 정공수송층과 전자수송층의 제조조건을 확립하고, 이를 이용하여 발광소자를 제조하였다. 그리고 제조된 발광소자를 이용하여 발광특성 결과를 분석하였다.

실험방법

(1) CdSe/ZnS 나노입자 합성 및 분석

10g 의 Trioctylphosophine oxide(TOPO)를 반응기에 넣고 1torr 에서 열을 가해 20 0℃까지 올린다. 그 후 열을 더 가해 300℃에서 안정화 시킨다. core 부분이 될 CdSe의 전도체들을 준비한다. 먼저 Cd(Ac)₂을 Tri-n-octylphosphine(TOP)에 녹여 준비시키고 Se을 TOP에 녹여 준비한다. 준비된 용액을 주사기를 사용해 TOPO가 들어가 안전화 되어있는 반응기에 넣고 온도를 200℃ 까지 올려 30분간 유지해 나노입자를 만든다. 이 후 Zn(Et)₂와 TMS를 이용하여 ZnS 입자를 코팅한다.

(2) 발광소자 제작

발광소자를 제작하기 위해서 우선 ITO기판을 왕수를 이용하여 에칭하여 기본적이 구 조를 제조하였다. 그 이후 아세톤과 2차 증류수, 톨루엔을 이용하여 세척하고, TPD와 나노입자를 톨루엔에 분산시킨 용액을 스핀코팅을 이용하여 TPD/나노입자층을 적층한 후 알루미늄 마스크를 이용하여 소자의 전극구조를 결정한다. 그 후 전자수송층을 증착 하고, 알루미늄을 증착하여 전극을 구성하였다.

결과 및 토론

(1) 나노입자의 특성 분석

나노입자 합성시간을 20분, 40분, 60분으로 다양하게 했을 때 합성시간이 나노입자의 광학특성에 영향을 어떻게 미치는지 알아보기 위해서 흡광도를 측정해 보았다. 그림에 서 보듯이 약 500nm 부근에서 매우 약한 흡광피크를 가짐을 확인할 수 있다. 이는 선 행 연구결과에서 녹색의 발광을 가지면, 약 5nm정도의 크기를 가짐을 확인하였다.

Fig. 1-1에서 볼 수 있듯이 큰 변화는 찾아보기 힘들었다. 보다 정확한 관찰을 위해 서 Fig. 1-2에서 그 부분을 확대해 보았다. 20분과 40분짜리는 그래프의 개형이 비슷할 뿐만 아니라 흡광도가 튀는 파장도 일정하지만 60분짜리는 미세하게 파장이 오른쪽으 로 옮겨진 걸 확인 할 수 있다. 합성시간이 나노입자의 크기에는 크게 영향을 주지는 얺지만 합성시간이 길어지면 나노입자의 크기에 영향을 미친다는 걸 확인할 수 있다. 그러므로 나노입자의 합성시간은 40분 안쪽에서 진행하는 것이 우리가 원하는 크기의 나노입자를 만들 수 있단 결론을 얻을 수 있다.

Fig. 1–1. Absorption by synthetic time of CdSe

Fig. 1–2. Absorption about 500nm by synthetic time of CdSe

(2) 전계발광소자의 특성 분석

Table 1은 제조조건에 따른 발광소자의 발광전압을 측정한 결과이다. 표에서 2 Step 으로 표시된 것은 TPD용액을 스핀코팅한 후에 나노입자를 스핀코팅한 경우이며, 1 Step의 경우는 TPD용액과 나노입자 용액을 동시에 스핀코팅한 결과이다. 사용하는 ITO 기판에 0.6ml 이상의 용액을 떨어뜨리며 용액이 넘치는 경우가 많아서 1회 코팅용 액으로 0.6ml를 사용하였다. 표에서 확인할 수 있듯이 발광전압에는 큰 차이가 없다. 하 지만 육안으로 확인할 경우에 발광세기는 1 Step으로 진행한 경우가 훨씬 세다. Sample 2와 3을 비교하면 전자수송층(ETL)의 기능을 확인할 수 있다. 전자수송층이 없 는 경우에는 전하 균형이 불균일하고, 전자의 흐름이 원활하지 못해서 발광전압이 상승 하게 된다.

	Sample 1	Sample 2	Sample 3
HTL	0.1g TPD/50ml Toluene (0.6ml)	0.1g TPD/50ml Toluene (0.4ml)	0.1g TPD/50ml Toluene (0.4ml)
EML	2ml QDs/50ml Toluene (0.6ml)	2ml QDs/50ml Toluene (0.2ml)	2ml QDs/50ml Toluene (0.2ml)
ETL	40nm Alq ₃	40nm Alq ₃	X
발광전압	5.0	4.3	5.3
기타	2 Step	1 Step	1 Step

Table 1. Luminescent Voltage of EL Film by Manufacture Method

Table 2는 나노입자의 농도에 따른 EL소자의 발광전압을 측정한 결과이다. 나노입자 용액의 농도가 낮은 경우 TPD용액과의 구분이 뚜렷하게 나타나지 않으며 전반적인 발 광세기가 미미한 수준이다. 특히 1ml 나노입자/50ml Toluene의 경우에는 거의 Mixed 용액을 사용하는 것과 큰 차이가 없으며, 저항 자체도 높게 나타난다. 이에 비해서 나 노입자의 농도가 5ml 나노입자/50ml Toluene인 경우에는 나노입자 용액과 TPD용액과 의 구분은 뚜렷하지만 박막이 너무 두껍게 형성되며 저항이 높게 나타난다. 두꺼운 막 이 형성되어 저항이 높고, 발광전압도 높지만 발광이 되는 순간 매우 강한 발광을 가진 다.

Table 2. Luminescent Voltage of EL Film by Concentration of CdSe/ZnS Nanoparticles (EML: x ml QDs/50ml Toluene * 0.2ml)

		Sample 4	Sample 5	Sample 6	Sample 7	Sample 8
ΗΊ	Ľ	0.1g TPD/50ml Toluene (0.4ml)				
EN	IL	1ml QDs	2ml QDs	3ml QDs	4ml QDs	5ml QDs
ΕT	Ľ	40nm Alq ₃				
발광	Ar	-	4.2	4.6	5.6	6.1
전압	Air	6.5	5.4	5.6	6.3	7.8

Table 3은 5ml 나노입자/50ml Toluene 용액의 첨가량에 따른 필름의 발광전압 측정 결 과이다. Table 2에서 확인할 수 있듯이 나노입자의 농도가 증가하면 발광세기가 향상되 지만, 저항이 증가하여 발광전압이 상승하게 된다. 이를 해결하기 위해서 고농도의 나 노입자 용액을 사용할 경우에 첨가량을 조절하여 실험하였다. 그 결과 발광전압에는 큰 차이가 없으며, 오히려 첨가량이 감소하면서 발광전압이 상승한다. 하지만 발광세기는 미미하게 상승하는 것을 확인할 수 있었다. Fig. 2는 5ml 나노입자/50ml Toluene 용액 을 이용한 ITO/TPD/CdSe-ZnS/Alq₃/Al소자의 발광이미지이다. 발광전압이 상승하면서 발광세기가 향상하는 것을 확인할 수 있으며, 10V에서는 매우 강한 발광세기를 가지는 것을 확인할 수 있다.

Table 3. Luminescent Voltage of EL Film by Amounts of CdSe/ZnS Nanoparticles Solution (EML: 5 ml QDs/50ml Toluene * x ml)

	Sample 9	Sample 10	Sample 11	Sample 12	Sample 13
HTL	0.1g TPD/50ml Toluene (0.4ml)				
EML	0.2ml	0.2ml	0.15ml	0.1ml	0.05ml
발광전압	9.3	3.5	4.3	4.5	4.8
기타	2 Step	1 Step	1 Step	1 Step	1 Step

3.0V	5.1V	7.5V	9.1V	10.0V

Fig. 2. Emission Image of ITO/TPD/CdSe-ZnS/Alq₃/Al Film by Voltage

<u>결론</u>

TOPO/TOP가 코팅된 CdSe/ZnS 나노입자는 고온 및 진공의 상태에서 성공적으로 합 성된 것을 흡광도 측정을 통해서 확인하였다. 합성된 나노입자를 이용하여 다양한 형태의 발광소자를 제조하였다. 제조된 발광소자의 발광전압을 측정하고 육안을 이용하여 발광세 기를 간접 비교하였다. 그 결과 1 Step을 이용한 제조방법이 2 Step을 이용한 경우보다 발광세기가 향상된다. 그리고 나노입자의 농도가 증가할수록 발광전압이 상승하지만 발광 세기도 향상되고, 고농도에서 첨가량이 줄일수록 발광세기가 향상된다. 5ml 나노입자 /50ml Toluene 용액을 이용한 ITO/TPD/CdSe-ZnS/Alq3/Al소자의 경우 매우 향상된 발 광세기를 가진다.

<u> 감사의 글</u>

이 연구는 과학기술부 지원으로 수행하는 21세기 프론티어 사업(이산화탄소저감 및 처 리개발기술)의 일환으로 수행되었습니다.

<u>Reference</u>

- A.P. Alivisatos, Science, 271 (1996) 933.E.W. Wong, P.E. Sheehan, C.M. Lieber, Science, 277 (1997) 1971.
- [2] X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, A.P. Alivisatons, *Nature*,404 (2000) 59.
- [3] T. Vossmeyer, L. Katsikas, M. Gienig, I. G. Popovic, K. Diesner, A. Chemseddine, A. Eychmiiller, and H. Weller, J. Phys. Chem., 98 (1994) 7665.
- [4] T. S. Ahmadi, Z. L. Wang, T. C.; Green, A. Henglein, and M. A. El-Sayed, Science, 272 (1996) 1924.
- [5] D. V. Talapin, S. K. Poznyak, N. P. Gaponik, A. L. Rogach, A. Eychmüller, *Physica E*, 14 (2002) 237.
- [6] C. Petit, P. Lixon, and M. P. Pileni, J. Phys. Chem., 1990, 94, 1598.
- [7] Mingyuan Gao, Stefan Kirstein, and Helmuth Möhwald, J. Phys. Chem. B, 102 (1998) 8360.
- [8] Y. Zhang, X. Wang, D. G. Fu, J. Q. Cheng, Y. C. Shen, J. Z. Liu, Z. H. Lu, J. Phys. Chem. Solids, 62 (2001) 903.