Photoluminescence and photocatalytic properties of M-doped TiO₂ (M = Co and Cr) materials

<u>김현규</u>^{1,*}, 정의덕¹, 유성미¹, 배종성¹, 홍경수¹, 박혁규^{1,2}, 홍석준³, 배상원³, 지상민³, 장점석³, 이재성³ ¹한국기초과학지원연구원 부산센터; ²부산대학교 물리학과; ³포항공과대학교 화학공학과 (hhgkim@kbsi.re.kr*)

Recently, some UV-active oxides turned into visible-light photocatalysts by substitutional doping of metals as in (Fe-, V-, or Mn-)-TiO $_2$ and NixIn1-xTaO4, reduced TiOx (x<2), and anion doping with N, C and S, as in TiO $_2$ -xNx , TiO $_2$ -xCx, TaON and Sm2Ti2O5S2 . Despite such reports there are no reports on the evolution of H2 under visible irradiation from Metal doped-TiO $_2$ nanoparticles.

Here, we report the new finding that the metal-doped ${\rm TiO}_2$ nanoparticles have a activity for the photoreaction of water under visible light irradiation. We characterized the electronic structure of Cr-doped ${\rm TiO}_2$ nanoparticles by FP-LAPW, and characterized them with UV-vis diffuse reflectance spectroscopy (UV-vis DRS) and X-ray diffraction (XRD). We obtained excitation and emission spectra of Cr-doped ${\rm TiO}_2$ nanoparticles from visible light to near infrared region at room temperature. This report describes the characteristics of Cr-doped ${\rm TiO}_2$ fabricated by the hydrothermal synthesis method and their photocatalytic activity for water splitting under visible light irradiation.