Photocatalytic activity of $Ti_{1-x}M_xO_2$ (M = Co and Cr) crystals

<u>김현규</u>^{1,*}, 정의덕¹, 김해진², 홍경수¹, 박혁규^{1,3}, 홍석준⁴, 배상원⁴, 지상민⁴, 장점석⁴, 이재성⁴ ¹한국기초과학지원연구원 부산센터; ²한국기초과학지원연구원 미래융합연구실; ³부산대학교 물리학과; ⁴포항공과대학교 화학공학과 (hhgkim@kbsi.re.kr*)

Metal-doped TiO₂ nanoparticles were prepared by the sol-gel and hydrothermal synthesis methods. The estimated quantum yields (QYs) of Pt/Cr-doped TiO₂ nanoparticles was ca. 0.3 %. Cr-, Co- and N-doped TiO₂ showed the photocatalytic activity for IPA degradation to CO₂, but only Cr-doped TiO₂ produced H₂ photocatalytically in the presence of methanol-water aqueous solution under visible light (> 420nm). Thus, in the case of Pt/Co-doped TiO₂, the electron excited to the conduction band has a sufficient reduction potential to reduce H+ ion, but hole in the valence band has lower oxidation potential than required for CH₃OH degradation to CO₂. Therefore, Cr-, Co- and N-doped TiO₂ show the different activity for the photocatalytic reaction of gases and solution phases. The results of the calculated electronic structure and experimental optical properties are correlated to schematically to describe the possible mechanism of the photocatalytic behavior of the system under study.